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Chiral violations from one-loop domain wall fermions

1. Introduction

Domain-wall simulations use lattices with a finite number ofpointsNs in the 5th dimension
[1], and so a breaking of chiral symmetry occurs. Only in the theoretical limit in whichNs = ∞ the
chiral modes can fully decouple from each other, yielding anexact chiral symmetry. Here we study
these chiral violations using perturbative calculations and computing three quantities: the residual
massmres, the difference∆ = ZV −ZA, andcmix, a chirally-forbidden mixing (which is then nonzero
at finiteNs) of an operator which measures the lowest moment of theg2 structure function.

We have studied the dependence of these three quantities onNs and the domain-wall height
M, and calculated the deviations from theNs = ∞ results whenNs is limited to small values, of
O(10). We have hence repeated the computations for several choices of Ns andM. A thorough
exploration of large regions in the two-dimensional space spanned byNs andM would be instead
quite expensive for Monte Carlo simulations, and perturbation theory seems the more practical and
cheaper way to gather hints of what is happening when the parameters are moved in this space.

In order to carry out these calculations one must use the Feynman rules which correspond to
the theory truncated at finiteNs, and thus we also had to compute the required propagator functions.

We have calculated the same quantities with the plaquette action [2] as well as with improved
gauge actions [3], since in numerical simulations it was observed that these improved gauge actions
(especially DBW2) reduce the chiral violations. We refer to[2, 3] for the actions, notations and
conventions used, and in particular for the expressions of the domain-wall fermion propagators at
finite Ns. Here we only remind that 0< M < 2 and that the chiral projectors areP± = (1± γ5)/2.

This domain-wall formulation [4] corresponds to having several flavors of lattice Dirac fermions
which are mixed via a mass matrix in a very special way, so thata large mass hierarchy is gener-
ated. To determine the chiral modes one must diagonalize (inthe fifth dimension) this mass matrix,
which however is not hermitian. Its square must then be considered, which means the second-order
operatorsDD† andD†D. They are hermitian and nonnegative and give a well-behavedspectrum.

A rotation of the 5-dimensional quark fieldsψs(x) to the basis which diagonalizes the mass
matrix gives finally the expression of the chiral mode:

χ0(x) =
√

1−w2
0 ∑

s
(P+ws−1

0 ψs(x)+P−wNs−s
0 ψs(x)),

where from now on we putw0 = 1−M. We can see from the damping factorsws−1
0 andwNs−s

0 that
the chiral mode is exponentially localized near the two walls ats= 1 ands= Ns. However, the
domain-wall heightM, which is not protected by chiral symmetry, undergoes an additive renormal-
ization, so thatw0 is also additively renormalized.

The standard chiral mode used in Monte Carlo simulations is then notχ0(x). It contains instead
only the quark fields exactly located at the boundaries:

q(x) = P+ψ1(x)+P−ψNs(x), q(x) = ψNs
(x)P+ + ψ1(x)P−.

These physical quark fieldsq(x) are more convenient to use thanχ0(x): they do not containw0 and
avoid the problem of its renormalization.

At finite Ns an additional issue arises:χ0(x) itself is no longer the exact expression of the
chiral mode. In fact,χ0(x) at finite Ns is an eigenvector of the mass matrix only up to terms of
orderNse−Nsα(0), whereα(0) is a constant determined by 2cosh(α(0)) = (1+w2

0)/|w0|.
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Chiral violations from one-loop domain wall fermions

2. Residual mass at tree level

The calculation of the propagator of the (approximate) chiral fieldsq(x) gives (form= 0)

〈q(−p)q(p)〉 =
iγµ sinpµ (1−e−2Nsα(p))+e−Nsα(p) ·2W(p)sinh(α(p))

1−W(p)eα(p) −e−2Nsα(p)
(

1−W(p)e−α(p)
) ,

where W(p) = 1−M + 2∑λ sin2 pλ
2 and 2cosh(α(p)) = (1+W2(p)+ ∑λ sin2 pλ )/|W(p)|. In

the limit of small momentum this 4-dimensional propagator becomes

〈q(−p)q(p)〉
∣

∣

∣

p≪1
= −(1−w2

0)
i6p+wNs

0 (1−w2
0)

p2 +w2Ns
0 (1−w2

0)
2
.

We can thus see that, although in the bare Lagrangian all quark fields are massless, the truncation
of domain-wall fermions at finiteNs generates already at the tree level a nonvanishing residual
mass of the physical fields:am(0)

res = −wNs
0 (1−w2

0) = −(1−M)Ns M(2−M). As expected, this
tree-level residual mass vanishes whenNs becomes infinite1. Its sign can be inferred from the
general expression of a fermion propagator of massµ for small momentum in Euclidean space:
(−i6p+ µ)/(p2 + µ2) = 1/(i6p+ µ). Since we work with evenNs (where the fermion determinant
can be proven to be positive),m(0)

res is always a negative quantity. With our calculations we have
thus reproduced, up to a sign, the result form(0)

res found in [4, 5, 6, 7, 8], where it was derived by
considering the quadratic operatorD†D, which could perhaps explain the sign discrepancy.

3. Physical propagator at one loop

At one loop we can write2

〈q(−p)q(p)〉1 loop =
1−w2

0

i6p−wNs
0 (1−w2

0)
+

1−w2
0

i6p−wNs
0 (1−w2

0)
Σq(p)

1−w2
0

i6p−wNs
0 (1−w2

0)

=
1−w2

0

i6p−wNs
0 (1−w2

0)− (1−w2
0)Σq(p)

.

The general form ofΣq(p) for m= 0 is (where we call for brevity ¯g2 = (g2
0/16π2)CF )

Σq(p) =
ḡ2

1−w2
0

[Σ0

a
+ i6p

(

c(Ns,M)
Σ1

loga2p2 + Σ1

)

−
(

i6p−wNs
0 (1−w2

0)
) 2w0

1−w2
0

Σ3

]

.

1Indeed, sincew0 = e−α(0), it is easy to see that the terms which are proportional towNs
0 = e−Nsα(0) rapidly approach

zero whenNs becomes large.
2Evidencing the damping factors of the external legs and the loop integralΣst(p), the structure ofΣq(p) is

Σq(p) = ∑Ns
s=1∑Ns

t=1
1

1−w2Ns
0

[

(

wNs−s
0 −w2Ns

0 w−(Ns−s)
0

)

P+ +
(

ws−1
0 −w2Ns

0 w−(s−1)
0

)

P−

−w0
i6p−wNs

0 (1−w2
0)

1−w2
0

(

(

ws−1
0 −w2(Ns−1)

0 w−(s−1)
0

)

P+ +
(

wNs−s
0 −w2(Ns−1)

0 w−(Ns−s)
0

)

P−
)]

·Σst(p) ·
1

1−w2Ns
0

[

(

wNs−t
0 −w2Ns

0 w−(Ns−t)
0

)

P− +
(

wt−1
0 −w2Ns

0 w−(t−1)
0

)

P+ (3.1)

−w0

(

(

wt−1
0 −w2(Ns−1)

0 w−(t−1)
0

)

P− +
(

wNs−t
0 −w2(Ns−1)

0 w−(Ns−t)
0

)

P+

) i6p−wNs
0 (1−w2

0)

1−w2
0

]

.
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Chiral violations from one-loop domain wall fermions

The most important difference inΣq from its expression at infiniteNs is the appearance of a totally
new contribution,Σ0, proportional to 1/a and associated with the breaking of chiral symmetry.Σ0

comes from the terms ofΣst(p) which are of order zero inp, and acts as a mass correction term.
Since

〈q(−p)q(p)〉1 loop =
1−w2

0

i6p−wNs
0 (1−w2

0)− (1−w2
0)Σq(p)

=
1−w2

0

i6p Z−1
2 +m(1)

res

Zw,

the one-loop radiatively induced mass is given by

am(1)
res = −wNs

0 (1−w2
0)− ḡ2Σ0.

Thus,Σ0 generates a finite additive renormalization to the residualmass whenNs is not infinite3.
The factorZw = 1−2ḡ2 Σ3 w0/(1−w2

0) = 1+ ḡ2 zw generates the additive renormalization tow0 at
this order [9], as we can see from(1−w2

0)Zw = 1−
(

w0 + ḡ2Σ3
)2

+O(ḡ4).
The renormalization of a composite operatorq(x)Oq(x) which is multiplicatively renormaliz-

able can also be expressed in a simple way:

〈(qOq)qq〉1 loop =
1−w2

0

i6p−wNs
0 (1−w2

0)
·AO(p) ·

1−w2
0

i6p−wNs
0 (1−w2

0)
,

whereAO(p) contains also the contribution of the damping factors, and takes the form

AO(p) = ḡ2
(

− γ(Ns,M)
O loga2p2 +BO

)

for a logarithmically divergent operator. The coefficientsof the divergences turn out to be different
from their continuum values, and they depend onNs and M. It is only whenNs = ∞ that the
anomalous dimensions become the ones calculated in the continuum theory. In particular, the
vector and axial-vector currents acquire a nonzero anomalous dimension at any finiteNs:

γ(Ns,M)
V = 2w2Ns

0

(

1−Nsw2Ns
0

1−w2
0

1−w2Ns
0

)(

Ns
1−w2

0

1−w2Ns
0

(

2+
1

1−w2Ns
0

)

−2−
w2

0

1−w2Ns
0

)

.

Furthermore, the residual mass as well as renormalization factors and mixing coefficients turn out
to lose gauge invariance whenNs is not infinite. Although numerically the deviations from gauge
invariance remain in most practical cases rather small, this is another of the pathological features
of the domain-wall theory truncated at finiteNs. It could be that this is a limitation of perturbation
theory, but it could be that a small gauge dependence is also present in numerical simulations.

These pathologies could actually be related to the mismatchbetween the (simplified) chiral
modes which are actually used, and the true chiral modes (theones which containw0). Notice that
at finiteNs there is an additional mismatch, because terms of orderNse−Nsα(0) and higher, which are
present in the true chiral modes forNs < ∞, are here missing as well. Thus, if calculations with the
true chiral modes would be gauge invariant and reproduce thecontinuum anomalous dimensions,
the missing pieces from these mismatches could then accountfor the above pathologies.

At one loop two diagrams contribute toΣ0 and so enter in the calculation of the residual mass:
the half-circle (or sunset) and the tadpole diagrams. We have automated the calculations of the
half-circle diagram (as well as the vertex diagrams for∆ andcmix) by developing suitable FORM
codes [10], integrating afterwards the corresponding expressions by means of Fortran codes. With
these programs we are able to compute matrix elements for general values ofNs andM.

3Of course higher loops and nonperturbative effects give further contributions to the shift of the residual mass.
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Chiral violations from one-loop domain wall fermions

4. The tadpoles

The behavior of the tadpole diagrams asNs andM change is particularly important.
The tadpoles do not contain pure 5-dimensional quark propagators, and so for them theΣst(p)

of Eq. (3.1) is diagonal in the fifth-dimensional index, and also proportional to(i6k−4r/a)Gµν(k),
whereGµν is the gluon propagator. This is the same integrand of the tadpoles for Wilson fermions,
where in the case of the tadpole diagram contributing toΣ1 it gives the result (in a general covariant
gauge)Tl = 8π2Z0(1−1/4(1−λ )), with Z0 = 0.154933390231. . . a well-known integral [11].

It is then clear that for domain-wall fermions the behavior of the tadpole diagrams as a function
of Ns (andM) is completely determined by the damping factors in the fifthdimension, (see Eq.
(3.1)). Their general effect can be already seen by looking at their leading contributions for large
Ns. In this approximation the damping factors enter the game ineither of these combinations:

Ns

∑
s=1

ws−1
0 wNs−s

0 = Nsw
Ns−1
0 ,

Ns

∑
s=1

(w2
0)

s−1 =
Ns

∑
s=1

(w2
0)

Ns−s =
1−w2Ns

0

1−w2
0

.

These are indeed the leading expressions, in units ofTd = (1−w2
0)Tl/(1−w2Ns

0 )2, for the tadpole
contributions to (respectively)Σ0 andΣ1, in the limit of largeNs. Already from these asymptotic
expressions (before computing the exact results) we can immediately see that the tadpole ofΣ0

vanishes whenNs = ∞, while the tadpole ofΣ1 gives in this limit the known Wilson number,Tl .
Thus, the damping factors play a primary rôle in determiningthe values of the domain-wall

tadpoles. After calculating their exact expressions, which include all subleading terms inNs, the
tadpole contribution toΣ0 turns out to be equal to

4Td

[

Ns(1+w2(Ns+1)
0 )wNs−1

0 −2wNs+1
0

1−w2Ns
0

1−w2
0

]

,

while the tadpole contribution toΣ1 turns out to be equal to

Td

[

(1+w2(Ns+1)
0 )

1−w2Ns
0

1−w2
0

−2Nsw2Ns
0

]

.

The values of these tadpoles present wide variations withNs andM, so that sometimes they turn
out to be small while in other situations they become large. This suggests that some care should be
used when talking about tadpole dominance in relation to domain-wall fermions. It also happens
that both tadpoles (ofΣ0 andΣ1) even decrease toward zero forM → 0 orM → 2.

A central point is that there are two kinds of tadpoles in the game here:

• the tadpole of order zero inp, which tends to zero forNs → ∞, and which contributes toΣ0

and the residual mass;

• the tadpole of orderap, which tends to its Wilson value forNs → ∞, and which contributes
to Σ1 and the renormalization factors.

They behave quite differently, and this is because thei6p of the first order of the self-energy flips
the chirality of some damping factors, which then combine ina different way. We stress that this is
quite unlike the Wilson case, where the tadpole ofΣ0 is just proportional to the tadpole ofΣ1:

T(Wilson)
(Σ0)

= −4T(Wilson)
(Σ1)

.
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Chiral violations from one-loop domain wall fermions

Tadpole improvement seems then not to be appropriate for theresidual mass: the tadpole
which contributes tomres goes to zero for largeNs or for M → 1, and for smallNs it assumes a
wide spectrum of values. Our interest is smallNs, where it is unclear what tadpole improvement
(or resummations) could mean. Moreover, no tadpole enters at all in the calculations of∆ andcmix.

For largeNs the tadpole ofΣ1 is rather close to its Wilson value, and that is why tadpole
improvement could be used in the calculations of the renormalization factors (in the largeNs limit).

5. Residual mass at one loop

Our one-loop perturbative calculations show that the numerical deviations from the case of
infinite Ns depend, apart fromNs (and to a smaller extent fromg0), very strongly on the choice of
M. We can observe that the deviations from the case of exact chiral symmetry are rather pronounced
whenM ∼ 0.1 or M ∼ 1.9. The values ofam(1)

res turn out to be positive only forM ≥ 1.2 (at least
for evenNs and if the coupling is not very small), and our results suggest that the minimal amount
of chiral violations is attained forM ∼ 1.2. This is then the optimal choice ofM from the point of
view of one-loop calculations, and corresponds to the renormalization ofM, which is not protected
by chiral symmetry and is then moved by radiative corrections away from its free field valueM = 1.
One can conjecture that higher-loop corrections and nonperturbative effects would shift this optimal
value further on, until the minimal point is eventually reached aroundM ∼ 1.8 (which provides the
smallest residual mass in Monte Carlo simulations).

We also can observe that forM = 1.9 the residual mass atNs = 12 is larger than atNs = 8,
and atNs = 16 is even larger. For a detailed discussion of these phenomena which occur near the
borders of the allowed values forM we refer to [2].

With improved gauge actions we can still see that the residual massam(1)
res is positive only for

M ≥ 1.2. This also shows that improved gauge actions do not behave too differently in terms of
the additive renormalization undergone byw0. Employing improved gauge actions produces, not
surprisingly, a suppression ofmres when one carries out the comparisons at the same value of the
coupling. The Iwasaki action gives a stronger suppression than the Lüscher-Weisz action, and there
seems to be a monotonic decrease of the residual mass asc1 grows. The DBW2 action is indeed
the most effective in generating large suppressions.

If comparisons between the various actions are instead madeat the same energy scale, the
picture that comes out is different from naive expectations. For example, for quenched QCD at 2
GeV one has to takeβ = 5.7 for the Lüscher-Weisz action,β = 2.6 for the Iwasaki action, and
β = 1.04 for the DBW2 action4. Themres numbers for the Iwasaki action are then rather close to
those of the DBW2 action, and surprisingly they lie in general slightly above the plaquette values.

However, for the quenched DBW2 action at 2 GeV one hasg2
0 = 5.77, which is rather large,

and so the one loop results cannot perhaps be trusted so easily5. Moreover, these values of the
couplings are determined from numerical simulations, and they then contain informations of a
nonperturbative nature, so that a mismatch can arise when one only takes into account the results
of the one-loop diagrams calculated for these values of the couplings.

Many numerical results, which we cannot include here for lack of space, can be found in [2, 3].

4We useβ = 6/g2
0 also for improved actions, instead ofβ ′ = 6(1−8c1)/g2

0.
5In this case the Lüscher-Weisz action gives the largestmres suppression, and indeedg2

0 at 2 GeV is still close to 1.
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Chiral violations from one-loop domain wall fermions

6. Bilinear differences, and a power-divergent mixing

SinceZV 6= ZA when chiral symmetry is broken, the difference between these renormalization
constants,∆ = ZV −ZA = −(ZS−ZP)/2, provides an estimate of chirality-breaking effects.

The amount of chirality breaking connected to∆ follows a pattern similar to the one of the
residual mass:∆ is rather large for smallNs or |1−M| ∼ 1, it decreases whenNs grows or when
|1−M| tends towards zero, and the violations of gauge invariance are very small.

The numbers for∆ come out much smaller, at a givenM andNs, than the ones for the residual
mass. For quantities such as four-quark operators it was suggested in [12, 13] that their chiral
violations are ofO(m2

res). Given the smallness of the numbers that we have obtained for∆, it is
possible that something similar is also occurring here.

We have also calculated the mixing of the antisymmetric operator

Od1 = q̄(x)γ[4γ5D1] q(x)

with an operator of lower dimension,

cmix ·
i
a

q̄(x)σ41γ5 q(x).

The operatorOd1 enters in the calculation of the first moment of theg2 structure function, and has
been simulated using quenched domain-wall fermions with the DBW2 gauge action [14].

The power-divergent mixing ofOd1 on the lattice is only caused by the breaking of chirality,
and hence it provides a quantitative measure of chiral violations. In the theoretical limitNs = ∞
one has insteadcmix = 0 and soOd1 becomes multiplicatively renormalized.

The chiral violations associated withcmix are rather small, and thus they also seem to be of
higher order inmres. The pattern of the deviations from the case of exact chirality is the usual one.
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