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Chiral violations from one-loop domain wall fermions

1. Introduction

Domain-wall simulations use lattices with a finite numbepofnts Ns in the 5th dimension
[1], and so a breaking of chiral symmetry occurs. Only in tieporetical limit in whichNg = o the
chiral modes can fully decouple from each other, yieldingact chiral symmetry. Here we study
these chiral violations using perturbative calculationd eomputing three quantities: the residual
Mmas9mes, the difference) = 2y — Za, andcyix, a chirally-forbidden mixing (which is then nonzero
at finite Ns) of an operator which measures the lowest moment ofitegructure function.

We have studied the dependence of these three quantitibls @amd the domain-wall height
M, and calculated the deviations from tNg = o results wherl\s is limited to small values, of
0O(10). We have hence repeated the computations for several shoidé andM. A thorough
exploration of large regions in the two-dimensional spgmmaed byNs andM would be instead
guite expensive for Monte Carlo simulations, and pertuobaheory seems the more practical and
cheaper way to gather hints of what is happening when thengeasis are moved in this space.

In order to carry out these calculations one must use theragrrules which correspond to
the theory truncated at finitd;, and thus we also had to compute the required propagataiduac

We have calculated the same quantities with the plaquetittng@] as well as with improved
gauge actions [3], since in numerical simulations it wasoled that these improved gauge actions
(especially DBW?2) reduce the chiral violations. We refef2p3] for the actions, notations and
conventions used, and in particular for the expressioneetibmain-wall fermion propagators at
finite Ns. Here we only remind that & M < 2 and that the chiral projectors dfe = (14 )/2.

This domain-wall formulation [4] corresponds to havingesay flavors of lattice Dirac fermions
which are mixed via a mass matrix in a very special way, sodHatge mass hierarchy is gener-
ated. To determine the chiral modes one must diagonalizbéififth dimension) this mass matrix,
which however is not hermitian. Its square must then be densd, which means the second-order
operatordD' andD'D. They are hermitian and nonnegative and give a well-behspedtrum.

A rotation of the 5-dimensional quark fields(x) to the basis which diagonalizes the mass
matrix gives finally the expression of the chiral mode:

Xo(X) = \/1—wg S (Prwg hs(x) +P-wo*“hs(x)),

S

where from now on we putip = 1— M. We can see from the damping factw§‘1 andWOS’S that
the chiral mode is exponentially localized near the two svalls= 1 ands = Ns. However, the
domain-wall heighiv, which is not protected by chiral symmetry, undergoes aitisddenormal-
ization, so thatvg is also additively renormalized.

The standard chiral mode used in Monte Carlo simulatiortgeis hotyo(x). It contains instead
only the quark fields exactly located at the boundaries:

q(x) =Pegn () +P-gn(x),  AX) = PN, ()P + 1 (X)P-.

These physical quark fieldgx) are more convenient to use thas(x): they do not contaimvg and
avoid the problem of its renormalization.

At finite Ns an additional issue ariseo(x) itself is no longer the exact expression of the
chiral mode. In factxo(x) at finite Ns is an eigenvector of the mass matrix only up to terms of
orderNse %@ wherea (0) is a constant determined by 2c@ati0)) = (1-+w3)/|wo|.
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2. Residual mass at tree level

The calculation of the propagator of the (approximate)attieldsq(x) gives (form= 0)

sinpy (1— e (D) + e 1a(P). 2W(p)sinh(a (p))

(a(=p)a(p)) = 1_W(p)ea(p)_e—2Nsa(p)(1_W(p)e—a(p)) ’

where W(p) =1-M+25,si? 2 and 2costa(p)) = (1+W?2(p)+ 3, sif p,)/[W(p)|. In
the limit of small momentum this 4-dimensional propagatecdmes

e PR (L-w])
(AP, = —A-w) R e

We can thus see that, although in the bare Lagrangian alkdigdds are massless, the truncation
of domain-wall fermions at finiteNS generates already at the tree level a nonvanishing residual
mass of the physical fieldsame = —whs(1—wg) = —(1— M)™M(2—M). As expected, this
tree-level residual mass vanishes whénbecomes infinite Its sign can be inferred from the
general expression of a fermion propagator of mager small momentum in Euclidean space:
(—ip+u)/(p?+ u?) =1/(ip + u). Since we work with eveiNs (where the fermion determinant
can be proven to be positiva);ﬁgl- is always a negative quantity. With our calculations we have
thus reproduced, up to a sign, the resultriég% found in [4, 5, 6, 7, 8], where it was derived by
considering the quadratic opera®@fD, which could perhaps explain the sign discrepancy.

3. Physical propagator at one loop

At one loop we can write
1w 1w
ip—wi(1-wd) ip—wh(1—wd)
1-w3

ip—wWhE(1—wg) — (1—w3) Zq(p)

1w
ip—who(1—wd)

(a(=p)a(p))1100p = Z4(P)

The general form oE4(p) for m= 0 is (where we call for brevitg? = (g%/lan)CF)
g’

l_Wz[ 0 1 i (5 logalp? +51) — (i~ Wi (1 wh)) e, 3}

lindeed, sinceyp = e 29 itis easy to see that the terms which are proportiona@'&b e Nsa(0) rapidly approach
zero when\s becomes large.
2Evidencing the damping factors of the external legs anddbg integrals;(p), the structure okq(p) is

Zq(p) =

o) =520 e (4S8 )P g

ip—whe(1—wd) 1) (s - 1) (Ne—
o e (8w Mg P+ (T g ) )|
1 _ _ (Ng— _(t—
.zst(p).il W2Ns [(Wgs t*\N(Z)NSWO (Ns t))P,+(MIt0717\A,(2)NSWO (t :L))F)+ (3.1)
—Wo

o (w2 g )P (et w0, ) ip— W’Js(l )]
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The most important difference &y, from its expression at infinitsls is the appearance of a totally
new contribution X, proportional to Ya and associated with the breaking of chiral symmeXy.
comes from the terms & (p) which are of order zero ip, and acts as a mass correction term.

Since 12 1 w2
—p)q 00 — = — Zw,
Q= P)AP) 1 to0p = WE(1- W) — (1-W2)Zq(p)  ipZ '+ md

S

the one-loop radiatively induced mass is given by
ames — WNS(:I. W2) g_ZZo

Thus, X, generates a finite additive renormalization to the resicuagds wherNs is not infinite®.
The factorZ, = 1— 292 Z3wp/(1— W%) =1+ g%z, generates the additive renormalizatiorwipat
this order [9], as we can see frofh—w3) Zy = 1— (Wo + §° Z3) 2L o(d).

The renormalization of a composite operaigx) O q(x) which is multiplicatively renormaliz-
able can also be expressed in a simple way:

1—w3 1-w3
e) = _ 0 X X 0 ’
((7 Q)QQ>lloop i]Zﬁ—W’SIS(l—WCZ)) Ao(Pp) i]Zﬁ—W’SIS(l—W%)
whereAg(p) contains also the contribution of the damping factors, akdg the form
Ao(p) = G~ 5" loga®p? + Bo)

for a logarithmically divergent operator. The coefficieatshe divergences turn out to be different
from their continuum values, and they dependMyand M. It is only whenNs = oo that the
anomalous dimensions become the ones calculated in thenwomt theory. In particular, the
vector and axial-vector currents acquire a nonzero anamaonension at any finitis:

M) W2Ns<1 N2 1- Wij) (Ns 1-wg <2+ 1 )_2_7\/\% )
1w 1-wa® 1-wa® 1-wa®
Furthermore, the residual mass as well as renormalizagictofs and mixing coefficients turn out
to lose gauge invariance whég is not infinite. Although numerically the deviations fromugge
invariance remain in most practical cases rather smafl,ishanother of the pathological features
of the domain-wall theory truncated at finlig. It could be that this is a limitation of perturbation
theory, but it could be that a small gauge dependence is e¢seipt in numerical simulations.

These pathologies could actually be related to the mismagtiveen the (simplified) chiral
modes which are actually used, and the true chiral mode®(teég which contailwo) Notice that
at finiteNs there is an additional mismatch, because terms of dger™s?(©) and higher, which are
present in the true chiral modes fidg < oo, are here missing as well. Thus, if calculations with the
true chiral modes would be gauge invariant and reproducedhgnuum anomalous dimensions,
the missing pieces from these mismatches could then actauthie above pathologies.

At one loop two diagrams contribute kg and so enter in the calculation of the residual mass:
the half-circle (or sunset) and the tadpole diagrams. We laatomated the calculations of the
half-circle diagram (as well as the vertex diagramsf@andcn,ix) by developing suitable FORM
codes [10], integrating afterwards the correspondingesgions by means of Fortran codes. With
these programs we are able to compute matrix elements fergeralues ofNs andM.

30f course higher loops and nonperturbative effects giviaéurcontributions to the shift of the residual mass.



Chiral violations from one-loop domain wall fermions

4. Thetadpoles

The behavior of the tadpole diagramsNysandM change is particularly important.

The tadpoles do not contain pure 5-dimensional quark prpagy and so for them th&y(p)
of Eq. (3.1) is diagonal in the fifth-dimensional index, afgbgproportional tdik — 4r /a) G,y (K),
whereGy,, is the gluon propagator. This is the same integrand of thaolad for Wilson fermions,
where in the case of the tadpole diagram contributingtib gives the result (in a general covariant
gauge)T; = 81°Z (1— 1/4(1— 7)), with Zy = 0.154933390231 . a well-known integral [11].

Itis then clear that for domain-wall fermions the behavifithe tadpole diagrams as a function
of N (andM) is completely determined by the damping factors in the fififlmension, (see Egq.
(3.1)). Their general effect can be already seen by lookirtheir leading contributions for large
Ns. In this approximation the damping factors enter the ganther of these combinations:

< 1 Ns—S e C sl aNes LW
&;WCS) o = Newp* 7, SZl(W%) :;1(“%) ° :l—iwg'

These are indeed the leading expressions, in unify ef (1—w2)T; /(1 — W(ZJNS)Z, for the tadpole
contributions to (respectivel\8lp and, in the limit of largeNs. Already from these asymptotic
expressions (before computing the exact results) we caredrately see that the tadpole b§
vanishes wheiNs = o, while the tadpole ok; gives in this limit the known Wilson numbetr,.

Thus, the damping factors play a primary réle in determirtimg values of the domain-wall
tadpoles. After calculating their exact expressions, winclude all subleading terms N, the
tadpole contribution t@g turns out to be equal to

W2 N1 al-wi
oy [t Dy 296

T
while the tadpole contribution t8; turns out to be equal to
N
(Nor1), 1— W) B Ne
Ta [(1+w )Tw 2Now3|

The values of these tadpoles present wide variations Mgthind M, so that sometimes they turn
out to be small while in other situations they become lardes Suggests that some care should be
used when talking about tadpole dominance in relation toadetwall fermions. It also happens
that both tadpoles (dfy andZ;) even decrease toward zero fdr— 0 orM — 2.

A central point is that there are two kinds of tadpoles in thmg here:

¢ the tadpole of order zero ip, which tends to zero foNs — o, and which contributes tg
and the residual mass;

¢ the tadpole of ordeap, which tends to its Wilson value fdYs — o, and which contributes
to 21 and the renormalization factors.

They behave quite differently, and this is becausei ghef the first order of the self-energy flips
the chirality of some damping factors, which then combina different way. We stress that this is
quite unlike the Wilson case, where the tadpol&gfs just proportional to the tadpole &f:

(Wilson) (Wilson)
T(Zo) B _4T(21) ’
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Tadpole improvement seems then not to be appropriate foretsidual mass: the tadpole
which contributes tames goes to zero for larg®ls or for M — 1, and for smallNs it assumes a
wide spectrum of values. Our interest is snidd] where it is unclear what tadpole improvement
(or resummations) could mean. Moreover, no tadpole entetsia the calculations oA andcmix.

For largeNs the tadpole ofz; is rather close to its Wilson value, and that is why tadpole
improvement could be used in the calculations of the rentizatan factors (in the largdl limit).

5. Residual mass at oneloop

Our one-loop perturbative calculations show that the nisakdeviations from the case of
infinite Ns depend, apart fromls (and to a smaller extent frogy), very strongly on the choice of
M. We can observe that the deviations from the case of exaet slfimmetry are rather pronounced
whenM ~ 0.1 orM ~ 1.9. The values ohmﬁé& turn out to be positive only foM > 1.2 (at least
for evenNg and if the coupling is not very small), and our results sugtes the minimal amount
of chiral violations is attained favl ~ 1.2. This is then the optimal choice df from the point of
view of one-loop calculations, and corresponds to the mabtization ofM, which is not protected
by chiral symmetry and is then moved by radiative correctiaway from its free field valuil = 1.
One can conjecture that higher-loop corrections and naumbetive effects would shift this optimal
value further on, until the minimal point is eventually read around ~ 1.8 (which provides the
smallest residual mass in Monte Carlo simulations).

We also can observe that ff = 1.9 the residual mass & = 12 is larger than as = 8,
and atNs = 16 is even larger. For a detailed discussion of these phemanvlich occur near the
borders of the allowed values ft we refer to [2].

With improved gauge actions we can still see that the rebiuaasarrﬁ% is positive only for
M > 1.2. This also shows that improved gauge actions do not beloavdifferently in terms of
the additive renormalization undergone \y. Employing improved gauge actions produces, not
surprisingly, a suppression of.s when one carries out the comparisons at the same value of the
coupling. The lwasaki action gives a stronger suppressian the Lischer-Weisz action, and there
seems to be a monotonic decrease of the residual magsgasws. The DBW?2 action is indeed
the most effective in generating large suppressions.

If comparisons between the various actions are instead m@attee same energy scale, the
picture that comes out is different from naive expectatidasr example, for quenched QCD at 2
GeV one has to tak@ = 5.7 for the Lischer-Weisz actioi§ = 2.6 for the Iwasaki action, and
B = 1.04 for the DBW2 actiof. Thems numbers for the lwasaki action are then rather close to
those of the DBW?2 action, and surprisingly they lie in gehslightly above the plaquette values.

However, for the quenched DBW?2 action at 2 GeV onegf;as 5.77, which is rather large,
and so the one loop results cannot perhaps be trusted sygPeddibreover, these values of the
couplings are determined from numerical simulations, d&y tthen contain informations of a
nonperturbative nature, so that a mismatch can arise whemmly takes into account the results
of the one-loop diagrams calculated for these values ofdbelngs.

Many numerical results, which we cannot include here fdk l#space, can be found in [2, 3].

4We usep = 6/g3 also for improved actions, instead 8f = 6(1— 8c1)/03.
5In this case the Liischer-Weisz action gives the lamggsisuppression, and indeg@ at 2 GeV is still close to 1.
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6. Bilinear differences, and a power-divergent mixing

Sincezy # Za when chiral symmetry is broken, the difference betweenetihesormalization
constantsA = 2y —Zp = —(Zs— Zp) /2, provides an estimate of chirality-breaking effects.

The amount of chirality breaking connectedAdollows a pattern similar to the one of the
residual massA is rather large for smalNs or |1 — M| ~ 1, it decreases wheXs grows or when
|1— M| tends towards zero, and the violations of gauge invarianeeery small.

The numbers foA come out much smaller, at a givbhandNs, than the ones for the residual
mass. For quantities such as four-quark operators it wagested in [12, 13] that their chiral
violations are ofO(mZ). Given the smallness of the numbers that we have obtained, fibris
possible that something similar is also occurring here.

We have also calculated the mixing of the antisymmetric ajoer

Og, = d(X) Yia¥sD1 d(X)
with an operator of lower dimension,

i _
Crix* — a(X) 041y50(X).

The operatoQy, enters in the calculation of the first moment of thestructure function, and has
been simulated using quenched domain-wall fermions wgHXBW?2 gauge action [14].

The power-divergent mixing dDg, on the lattice is only caused by the breaking of chirality,
and hence it provides a quantitative measure of chiral tiarla. In the theoretical limiNg = o
one has insteadyx = 0 and sd0y, becomes multiplicatively renormalized.

The chiral violations associated with,ix are rather small, and thus they also seem to be of
higher order irms. The pattern of the deviations from the case of exact chyraithe usual one.

References
[1] For an overview of recent Monte Carlo results with dormaiall fermions we refer to the plenary talk
of Peter Boyle in these Proceedings, and to the refereneesitth
[2] S. Capitani, Phys. Rev. 5, 054505 (2007) [arXiv:hep-lat/0606022].
[3] S. Capitani, arXiv:hep-lat/0609026.
[4] Y. Shamir, Nucl. Phys. B06, 90 (1993) [arXiv:hep-lat/9303005].
[5] P. M. Vranas, Phys. Rev. b7, 1415 (1998) [arXiv:hep-lat/9705023].
[6] P. M. Vranas, Nucl. Phys. Proc. Supf8, 605 (1998) [arXiv:hep-lat/9709119].
[7] Y. Kikukawa, H. Neuberger and A. Yamada, Nucl. Physs2s, 572 (1998) [arXiv:hep-lat/9712022].
[8] T.Blum, A. Soni and M. Wingate, Phys. Rev.@, 114507 (1999) [arXiv:hep-lat/9902016].
[9] S. Aokiet al, Phys. Rev. 19, 094505 (1999) [arXiv:hep-1at/9810020].
[10] J. A. M. Vermaseren, arXiv:math-ph/0010025.
[11] S. Capitani, Phys. Rep82, 113 (2003) [arXiv:hep-lat/0211036].
[12] Y. Aoki et al, Phys. Rev. Dr2, 114505 (2005) [arXiv:hep-lat/0411006].
[13] N. Christ [RBC and UKQCD Collaborations], PAAT 2005, 345 (2005).
[14] K. Orginos, T. Blum and S. Ohta, Phys. Rev7B, 094503 (2006) [arXiv:hep-lat/0505024].



