
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
6
8

Topological susceptibility in 2-flavor lattice QCD
with fixed topololgy

T.W. Chiu ∗,a†, S. Aoki b,c, H. Fukaya d, S. Hashimoto e, f , T.H. Hsieh g, T. Kaneko e, f ,
H. Matsufuru e, J. Noaki e, K. Ogawa a, T. Onogi h, N. Yamadae, f (JLQCD and TWQCD
Collaborations)

a Physics Department, Center for Theoretical Sciences, and National Center for Theoretical
Sciences, National Taiwan University, Taipei 10617, Taiwan

b Graduate School of Pure and Applied Sciences, University ofTsukuba, Tsukuba 305-8571,
Japan

c Riken BNL Research Center, Brookhaven National Laboratory, Upton, NY11973, USA
d Theoretical Physics Laboratory, RIKEN, Wako 351-0198, Japan
e High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
f School of High Energy Accelerator Science, The Graduate University for Advanced Studies
(Sokendai), Tsukuba 305-0801, Japan

g Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
h Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

We determine the topological susceptibilityχt in the trivial topological sector generated by lattice

simulations of two-flavor QCD with overlap Dirac fermion, ona 163 × 32 lattice with lattice

spacing∼ 0.12 fm, at six sea quark massesmq ranging fromms/6 toms (wherems is the physical

strange quark mass). Theχt is extracted from the plateau (at large time separation) of the time-

correlation function of the flavor-singlet pseudoscalar meson (η ′), which arises from the finite

size effect due to fixed topology. In the smallmq regime, our result ofχt is proportional tomq

as expected from chiral effective theory. Using the formulaχt = mqΣ/Nf by Leutwyler-Smilga,

we obtain the chiral condensate inNf = 2 QCD asΣMS(2 GeV) = [254(5)(10)MeV]3, in good

agreement with our previous result obtained in theε-regime.
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1. Introduction

In Quantum Chromodynamics (QCD), the topological susceptibility (χt ) is the most crucial
quantity to measure the topological charge fluctuations of the QCD vacuum, which plays an im-
portant role in breaking theUA(1) symmetry. Theoretically,χt is defined as

χt =

∫

d4x〈ρ(x)ρ(0)〉 (1.1)

where

ρ(x) =
1

32π2 εµνλσ tr[Fµν(x)Fλσ (x)]

is the topological charge density (∝ axial anomaly) expressed in term of the matrix-valued field
tensorFµν .

With mild assumptions, Witten [1] and Veneziano [2] obtained a relationship between the
topological susceptibility in the quenched approximationand the mass ofη ′ meson (flavor singlet)
in full QCD with Nf degenerate flavors, namely,χt(quenched) = f 2

π m2
η ′/(4Nf ) where fπ = 131

MeV, the decay constant of pion. This implies that the mass ofη ′ is essentially due to the axial
anomaly relating to non-trivial topological charge fluctuations, which can turn out to be nonzero
even in the chiral limit, unlike those of the (non-singlet) approximate Goldstone bosons.

Using the Chiral Perturbation Theory (ChPT), Leutwyler andSmilga [3] obtained the follow-
ing relation in the chiral limit,

χt =
mqΣ
Nf

+O(m2
q) (1.2)

wheremq is the quark mass, andΣ is the chiral condensate. In other words, asmq → 0, the topo-
logical susceptibility is suppressed due to internal quarkloops. Most importantly, (1.2) provides a
viable way to extractΣ from χt in the chiral limit.

From (1.1), one obtains

χt =

〈

Q2
t

〉

Ω
, Qt ≡

∫

d4xρ(x)

whereΩ is the volume of the system, andQt is the topological charge (which is an integer for QCD).
Thus, one can obtainχt by counting the number of gauge configurations for each topological sector.
Obviously, for a set of gauge configurations in the topologically-trivial sector withQt = 0, it gives
χt = 0. However, even for a topologically-trivial gauge configuration, it may possess non-trivial
topological excitations in sub-volumes. Thus, one can investigate whether there are topological
excitations within any sub-volumes, and to measureχt using the correlation of the topological
charges of two sub-volumes [4].

In general, for any topological sector withQt , using saddle point expansion on the QCD par-
tition function in a finite volume, it can be shown that [5] (see also [6])

lim
|x|→∞

〈ρ(x)ρ(0)〉 =
1
Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+O(Ω−3) (1.3)
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where

c4 = −
1
Ω

[

〈Q4
t 〉θ=0−3〈Q2

t 〉
2
θ=0

]

Thus, one can consider two spatial sub-volumes at time slices t1 andt2, and to measure their
time-correlation function

C(t1− t2) = 〈Q(t1)Q(t2)〉 = ∑
~x1,~x2

〈ρ(x1)ρ(x2)〉

where the summations run over the spatial volumes att1 and t2 respectively. Then its plateau at
large|t1− t2| can be used to extractχt , provided that|c4| � 2χ2

t Ω.
However, for lattice QCD, it is difficult to extractρ(x) andQt unambiguously from the gauge

link variables, due to their rather strong fluctuations.
To circumvent this difficulty, one may consider the Atiyah-Singer index theorem [7]

Qt = n+−n− = index(D) (1.4)

wheren± is the number of zero modes of the massless Dirac operatorD ≡ γµ(∂µ + igAµ) with ±

chirality. SinceD is anti-Hermitian and chirally symmetric, its nonzero eigenmodes must come
in complex conjugate pairs (i.e.,Dφ = iλφ impliesDγ5φ = −iλγ5φ , for λ = λ ∗ 6= 0) with zero
chirality (

∫

d4xφ†γ5φ = 0). Thus one can obtain the identity

n+ −n− =

∫

d4x mtr[γ5(D +m)−1(x,x)] (1.5)

by spectral decomposition, where the nonzero modes drop outdue to zero chirality. In view of (1.4)
and (1.5), one can regardm tr[γ5(D +m)−1(x,x)] as topological charge density, to replaceρ(x) in
the measurement ofχt .

For lattice QCD, it is well-known that the overlap Dirac operator [8] in a topological non-trivial
gauge background possesses exact zero modes (with definite chirality) satisfying the Atiyah-Singer
index theorem. Writing the massive overlap Dirac operator as

D(m) =
(

m0 +
m
2

)

+
(

m0−
m
2

)

γ5
Hw(−m0)

√

H2
w(−m0)

whereHw(−m0) is the standard Hermitian Wilson operator with negative mass−m0 (0 < m0 < 2),
then the topological charge density can be defined as

ρ1(x) = m tr[γ5(Dc +m)−1
x,x ]

where(Dc + m)−1 is the valence quark propagator with quark massm, andDc is a chirally sym-
metric and non-local operator, relating toD(0) by Dc = D(0)[1−D(0)/(2m0)]

−1 [9]. Note that
(Dc +m)−1 is exponentially-local for sufficiently smooth gauge background and nonzerom. Here
ρ1(x) is justified to be topological charge density, since it can beshown that (see e.g., [10])

∑
x

ρ1(x) = mTr[γ5(Dc +m)−1
x,x ] = n+ −n− (1.6)
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which is similar to its counterpart in continuum (1.5), where Tr denotes trace over Dirac, color and
lattice spaces.

Now we can replaceρ(x) with ρ1(x), and use (1.3) to extractχt for any topological sector.
However, on a finite lattice, it is contaminated bymπ , mη ′ and any states which can couple to
〈ρ1(x)ρ1(0)〉. A better alternative is to compute the correlator of the flavor-singlet pseudoscalar
mesonη ′, which behaves as [4, 5]

lim
|x|�1

m2
q

〈

η ′(x)η ′(0)
〉

'
1
Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+O(e−mη′ |x|)+O(Ω−3) (1.7)

Then the time-correlation function ofη ′ (see Fig. 1(a)) is fitted toA+B(e−Mt +e−M(T−t)) to extract

the constantA = 1
m2

q

1
T

(

Q2
t

Ω − χt −
c4

2χtΩ

)

andχt , provided that|c4| � 2χ2
t Ω.
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Figure 1: (a) A schematic diagram for the time-correlation function of the flavor singlet pseudoscalar me-
son operator. Each solid line denotes the valence quark propagator(Dc + mq)

−1. (b) The time-correlation
function of the flavor singlet (circles), and its connected (triangle down) and disconnected (triangle up)
contributions. Data formq = 0.025 are shown.

2. Lattice Setup

Simulations are carried out for two-flavor (Nf = 2) QCD on a 163×32 lattice at a lattice spac-
ing ∼ 0.12 fm. For the gluon part, the Iwasaki action is used atβ = 2.30, together with unphysical
Wilson fermions and associated twisted-mass ghosts [11]. The unphysical degrees of freedom
generate a factor det[H2

w(−m0)/(H2
w(−m0)+ µ2)] in the partition function (we takem0 = 1.6 and

µ = 0.2) that suppresses the near-zero eigenvalue ofHw(−m0) and thus makes the numerical oper-
ation with the overlap operator substantially faster. Furthermore, since the exact zero eigenvalue is
forbidden, the global topological change is preserved during the molecular dynamics evolution of
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the gauge field. Our main runs are performed atQ = 0, while Q = −2 and−4 configurations are
also generated at one sea quark mass in order to check the consistency as described below.

For the sea quark massmq we take six values: 0.015, 0.025, 0.035, 0.050, 0.070, and 0.100
that cover the mass rangems/6–ms with ms the physical strange quark mass. After discarding
500 trajectories for thermalization, we accumulate 10,000trajectories in total for each sea quark
mass. In the calculation ofχt , we take one configuration every 20 trajectories, thus we have 500
configurations for eachmq. For each configuration, 50 pairs of lowest-lying eigenmodes of the
overlap-Dirac operatorD(0) are calculated using the implicitly restarted Lanczos algorithm and
stored for the later use.

3. Results

For the connected diagram (see Fig. 1(a)), the pion correlator is computed using the conju-
gate gradient algorithm with a low-mode preconditioning. Low-modes are also used for averaging
over source points [12], which significantly improves the statistical signal. For the disconnected
diagram, the quark propagator is represented by the eigenmode decomposition and approximated
by the 50 conjugate pairs of the low-lying eigenmodes. The quark propagator is then obtained for
any source point without extra computational cost, and the disconnected loops can be calculated
with an average over the source point. The truncation is motivated by the expectation that the long
distance correlation is dominated by the low-lying fermionmodes; its validity has to be checked
numerically (see below).

In Fig. 1(b), we plot−Cη ′(t) together with those of connected and disconnected parts for
mq = 0.025. The curve is a fit to a functionA+ B(e−Mt + e−M(T−t)) with data for−Cη ′(t) in the
ranget ∈ [4,28]. The horizontal line is a fitted constantA = 1.70(13)× 10−3, where the error is
estimated using the jackknife method with bin size of 20 configurations, with which the statistical
error saturates. Assuming|c4| � 2χ2

t Ω, we obtaina4χt = 3.40(27)×10−5 at mq = 0.025.
Since the disconnected diagram is computed with only 50 pairs of low-lying eigenmodes, we

have to check whether they suffice to saturateCη ′(t). For the time range[4,28] used for fitting, as
the number of eigenmodes is increased from 10 to 30, the change of correlator|δCη ′ |/Cη ′ is∼ 3%,
while from 30 to 50, it is only∼ 0.3%, which is less than 8% of the statistical error. ThusCη ′ is
well saturated with 50 eigenmodes. This also holds for all six sea quark masses.

In Fig. 2, we plot the topological susceptibilityχta4 as a function of the sea quark mass
mqa, The statistical precision is good enough to find a clear dependence on the sea quark mass.
For the smallest three quark masses, 0.015, 0.025, and 0.035, the data are well fitted by a lin-
ear functionF + Gm with the interceptF = 0.0(1)× 10−5 and the slopeG = 0.00133(5). Evi-
dently, the intercept is consistent with zero, in agreementwith the χPT expectation (1.2). Equat-
ing the slope toa3Σ/Nf , we obtaina3Σ = 0.0027(1). In order to convertΣ to that in theMS
scheme, we calculate the renormalization factorZMS

m (2 GeV) using the non-perturbative renor-
malization technique through the RI/MOM scheme [13]. Our result is ZMS

m (2GeV) = 0.742(12)
[14]. With a−1 = 1670(20)(20) MeV determined withr0 = 0.49 fm [15], the value ofΣ is tran-
scribed toΣMS(2GeV) = [254(5)(10)MeV]3, which is in good agreement with our previous result
[251(7)(11) MeV]3 [16] obtained in theε-regime from the low-lying eigenvalues. The errors rep-
resent a combined statistical error (a−1 andZMS

m ) and the systematic error estimated from the higher
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Figure 2: Topological susceptibilityχta4 versus sea quark massmqa.

order effects (e.g., c4 term), respectively. Since the calculation is done at a single lattice spacing, the
discretization error cannot be quantified reliably, but we do not expect much larger error because
our lattice action is free fromO(a) discretization effects. Our results of topological susceptibility
are listed in Table 1, for six sea quark masses respectively.

mqr0 0.0614 0.1023 0.1432 0.2046 0.2861 0.4091

χt r4
0 0.0055(2) 0.0095(8) 0.0130(17) 0.0212(29) 0.0313(26) 0.0253(33)

Table 1: The values of topological susceptibilityχtr4
0 extracted in theQ= 0 sector, for six sea quark masses

respectively.

In principle, χt in (1.3) is universal for any topological sector. We check the universality of
χt as follows. At sea quark massmq = 0.050, we generate 250 configurations withQ = −2 and
−4 respectively in addition to the main run atQ = 0. Then we extractχt from the time-correlation
function ofη ′, similar to theQ = 0 case. Our results fora4χt are:{7.4(1.3),6.4(2.1),5.9(1.8)}×

10−5 for Q = {0,−2,−4} respectively. Evidently,χt extracted from different topological sectors
are consistent with each other within the statistical error.

Finally, we come to the assumption|c4| � 2χ2
t Ω in extractingχt via (1.3). With the formulas

derived in [5], we can obtain an estimate of the upper bound of|c4|/(2χ2
t Ω) by measuring the

two-point correlator〈ρ1(x1)ρ1(x2)〉 and the four-point correlator〈ρ1(x1)ρ1(x2)ρ1(x3)ρ1(x4)〉. Our
preliminary result is|c4|/(2χ2

t Ω) < 0.1, for all six sea quark masses. Details of this calculation
will be presented elsewhere. We note that the upper bound|c4|/(2χ2

t Ω) < 0.1 is also consistent
with the ratioc4/χt ' 0.3 obtained in the quenched approximation [17].

4. Conclusion

In this paper, we have determined the topological susceptibility χt in two-flavor QCD from a
lattice calculation of two-point correlators at a fixed global topological chargeQt = 0. The expected
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sea quark mass dependence ofχt from χPT is clearly observed with the good statistical precision
we achieved, in contrast to the previous unquenched latticecalculations. Our result indicates that
the topologically non-trivial excitations (e.g., instanton and anti-instanton pairs) are in fact locally
active in the QCD vacuum, even when the global topological charge is kept fixed. The information
of these topological excitations is carried by low-lying fermion eigenmodes if the exact chiral
symmetry is preserved on the lattice. This work demonstrates that Monte Carlo simulation of
lattice QCD with fixed topology is a viable approach, to be pursued when the topology change
hardly occurs near the continuum limit even with chirally non-symmetric lattice fermions. The
artifacts due to the fixed topology in a finite volume can be removed to obtain the physics results
in theθ vacuum, provided thatχt has been determined in the first place [5, 6], as has been done in
this work.

Numerical simulations are performed on Hitachi SR11000 andIBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 07-16), and also in part on NEC SX-8 at YITP (Kyoto U), NEC SX-8 at
RCNP (Osaka U), and IBM/HP clusters at NCHC and NTU-CC (Taiwan). This work is supported
in part by the Grant-in-Aid of the Japanese Ministry of Education (No. 13135204, 15540251,
17740171, 18034011, 18340075, 18740167, 18840045, 19540286, and 19740160) and the Na-
tional Science Council of Taiwan (No. NSC95-2112-M002-005, NSC95-2112-M001-072).
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