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The increasing accuracy of experimental data in flavour physics requires a corresponding im-

provement on the theoretical side, in particular concerning the non-perturbative dynamics of

QCD. This has prompted the lattice community to aim at an unprecedented accuracy in form

factors and matrix elements. However, in the light sector, the meson masses remain too heavy

for an interpolation, which makes it necessary to rely on Chiral Perturbation Theory to perform

extrapolations in the light quark masses. This makes it all the more necessary to assess precisely

the range of validity of this theory. More precisely, the presence of strange quark pairs in the

sea may have a significant impact of the pattern of chiral symmetry breaking : in particular large

differences can occur between the chiral limits of two and three massless flavours (i.e., whether

ms is kept at its physical value or sent to zero). We recall some indications of such a scenario

in QCD, in relation with the peculiar dynamics of the scalar sector. We explain how this could

affect the convergence of three-flavour chiral series, commonly used to extrapolate the results of

lattice simulations. Finally, we indicate how lattice simulations with three dynamical flavours

could unveil such an effect through the quark-mass dependence of light meson masses and decay

constants.
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1. Two chiral limits of interest

Because of the mass hierarchy among light quarks, the strange quark may play a special role
in the low-energy dynamics of QCD. It is light enough to allowfor a combined expansion of
observables in powers ofmu,md,ms around theNf = 3 chiral limit (meaning 3 massless flavours):
mu = md = ms = 0. But it is sufficiently heavy to induce significant changes in order parameters
from theNf = 3 chiral limit to theNf = 2 chiral limit: mu = md = 0 andms physical. Finally, it is
too light to suppress efficiently loop effects of massive ¯sspairs (contrary to heavier quarks) [1].

Two different versions of Chiral Perturbation Theory have been developed around these two
limits. In the Nf = 2 massless limit, only the pions play a particular role and thus are the only
available degrees of freedom. TheNf = 3 chiral limit promotes pions, kaons andη as the degrees
of freedom : this second version ofχPT is richer, discusses more processes in a larger range of
energy, but contains more unknown low-energy constants (LECs) and may have a slower conver-
gence. In each limit, the LECs encode the pattern of chiral symmetry breaking, cannot be computed
within χPT and must be determined from experiment. Obviously, LECs in both theories are related
since theNf = 2 theory can be obtained fromNf = 3 χPT by restricting it to the pion sector and
integrating out kaons and eta, treated as massive particles. However, the details of the connection
between the two theories remain under debate.

Indeed, due to ¯sssea-pairs, order parameters such as the quark condensate and the pseudoscalar
decay constant,Σ(Nf ) = − limNf 〈ūu〉 and F2(Nf ) = limNf F2

π , can reach significantly different
values in the two chiral limits (limNf denoting the chiral limit withNf massless flavours) [1]. An
illustration is provided by the quark condensate in the two limits:

Σ(2) = Σ(2;ms) = Σ(2;0)+ms
∂Σ(2;ms)

∂ms
+O(m2

s) (1.1)

= Σ(3)+ms lim
mu,md→0

i
∫

d4x 〈0|ūu(x) s̄s(0)|0〉+O(m2
s) (1.2)

Here,s̄s-pairs are involved through the two-point correlator〈(ūu)(s̄s)〉, which violates the Zweig
rule in the vacuum (scalar) channel1. This loop effect disappears in the large-Nc limit, which is
known to fail in the 0++ channel due to the complicated structure of broad resonances, correspond-
ing to poles of the scattering matrix located far away from the real axis (see for instance [2] for a
discussion of the lightest scalar resonances).

Arguments based on the spectrum of the Dirac operator [1] indicate that this effect should
suppress order parameters whenms → 0: Σ(2) ≥ Σ(3) andF2(2) ≥ F2(3). Since the quark con-
densate(s) and the pseudoscalar decay constant(s) are the building blocks of the two versions of
χPT at leading order, a strong decrease fromNf = 2 to Nf = 3 should have a direct impact on the
structure of the two theories. We discuss some available data on the pattern of chiral symmetry
breaking in both chiral limits in turn.

1Like all the terms in thems-expansion ofΣ(2), this correlator is aSUL(2)×SUR(2) order parameter related to the
spontaneous breakdown ofNf = 2 chiral symmetry, and this for any value ofms. The (scheme-dependent) high-energy
contributions to eq. (1.2) should be proportional tom= mu = md and thus drop from the relation once theNf = 2 chiral
limit has been taken (in contrast with the quark condensatesarising in OPE at non-vanishingmu,md,ms, which exhibit
such ultraviolet divergences).
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2. The situation in theNf = 2 limit

A few years ago, the Brookhaven E865 collaboration providednew data onKℓ4 decays [3].
Building upon the dispersive analysis ofππ scattering [4], we extracted the two-flavour order
parameters [5]:

X(2) =
(mu +md)Σ(2)

F2
π M2

π
= 0.81±0.07 Z(2) =

F2(2)

F2
π

= 0.89±0.03 (2.1)

A different analysis, with an additional theoretical inputfrom the scalar radius of the pion, led to a
larger value forX(2) [6].

The situation is somewhat modified by new data from the NA48 collaboration [7], which show
some discrepancy with the E865 phase shifts in the higher endof the allowed phase space. The role
of isospin breaking corrections is under discussion currently. The preliminary values of the phase
shifts [7] tend to increase the value of theI = J = 0 ππ scattering length, and to decrease the value
of the two-flavour quark condensate, possibly pushingX(2) down to 0.7.

The Gell-Mann–Oakes–Renner relation and its siblings correspond toX(2) = Z(2) = 1 and
such deviations from unity may seem fairly unimpressive. However one should remember these
areNf = 2 chiral expansions in powers ofmu andmd only. Indeed,X(2) andZ(2) indicate the
convergence ofNf = 2 chiral expansions ofF2

π M2
π andF2

π respectively : they measure the relative
size of the leading-order term in these expansions. One usually expects a far quicker convergence
of Nf = 2 chiral series, with much smaller next-to-leading order corrections (below 10%) [5].

3. The situation in theNf = 3 limit

To includeK- and η-mesons dynamically, one must use three-flavourχPT, where the ex-
pansion in the three light quark masses starts around theNf = 3 vacuummu,md,ms = 0. Here,
strange sea-quark loops may have a dramatic effect onNf = 3 chiral expansions. The leading-order
(LO) term, which depends on theO(p2) low-energy constantsF2(3) andΣ(3), would be damped,
whereas next-to-leading-order (NLO) corrections could beenhanced, in particular those related to
the violation of the Zweig rule in the scalar sector. For instance, the Gell-Mann–Oakes–Renner
relation would not be saturated by its LO term and would receive sizeable numerical contributions
from terms treated as NLO in the chiral counting scheme.

Indirect estimates [8, 9] suggest a very significant effect.At NLO the violation of the Zweig
rule in the scalar sector is encoded in the two LECsL4 andL6. Dispersive estimates of the correlator
〈(ūu)(s̄s)〉, related toL6 [8], indicate that the quark condensate may drop by a half from Nf = 2
to Nf = 3, i.e. whenms is sent from its physical value down to zero (such a decrease has been
observed by the MILC collaboration [10]). On the other hand [9], the dispersive study of low-
energyπK scattering through Roy-Steiner equations and the naive comparison with NLONf = 3
chiral expansions yieldsL4(Mρ) = (0.53±0.39) ·10−3.

Such a value may seem rather small, but one should not forget the ms-enhancement of the
contributions ofL4 andL6 in chiral series. Take for instance

F2
π = F(3)2 +16(ms+2m)B0∆L4+16mB0∆L5+O(m2

q) (3.1)
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whereB0 = − limmu,md,ms→0〈ūu〉/F2
π , and we have put together NLO low-energy constants and

chiral logarithms :∆L5 = L5(Mρ)+0.67·10−3 and∆L4 = L4(Mρ)+0.51·10−3 (which is enhanced
by a factor ofms/m). If we assume that the LO contribution is numerically dominant (i.e.,F2

π =

F(3)2 to a very good approximation), we can perform the following manipulations:

F(3)2

F2
π

=
F2(3)

F2(3)+O(m2
q)

= 1−8
2M2

K +M2
π

F2
π

∆L4−8
M2

π
F2

π
∆L5+O(m2

q) = 1−0.51−0.04+O(m2
q)

(3.2)
where we have used 1/(1+ x) = 1− x and eq. (3.1) at the second step, and the second and third
terms of the last equality are obtained usingL4(Mρ) = 0.5·10−3 andL5(Mρ) = 1.4·10−3 respec-
tively (these values are used for illustrative purposes). Eq. (3.2) is clearly in contradiction with the
original assumptionF2

π ≃ F(3)2. A similar game can be played withL6 andF2
π M2

π .
We can draw several conclusions from this simple exercise. Asmall positive value ofL4(Mρ)

or of L6(Mρ) is enough to invalidate the usual assumption of a rapid convergence ofNf = 3 chiral
series (an issue to be remembered when one tries to extract the values of LECs in lattice simula-
tions). In addition, we may encounter chiral seriesA = ALO + ANLO + AδA with a good overall
convergence, i.e.,δA ≪ 1 but the numerical balance between LO and NLO depends on the rele-
vance of strange sea-quark loops. The numerical competition between formal LO and NLO makes
approximations such as 1/(1+x)≃ 1−x or (ms+m)B0≃M2

K rather hazardous, leading to potential
contradictions and/or slow convergence for some chiral expansions.

Actually, such difficulties in the convergence are encountered when NNLO computations are
fitted to experimental data. A good example can be found amongthe reference fits in ref. [11]:
for instance, the so-called Fit 10 yields :(M2

π)th = (M2
π)exp[0.736+0.006−0.258], corresponding

to the relative size of LO, NLO and NNLO respectively. If confirmed, such difficulties in the
convergence of three-flavour chiral expansions should be considered as a very serious problem and
a source of sizable systematics in lattice results relying on chiral extrapolations on a large range of
quark masses.

4. Constraints from ππ and πK scatterings

We would like to cope with the potentially “large” values ofL4 and L6, and the resulting
numerical competition between formal LO and NLO contributions in chiral series. To do so, we
have introduced a framework, called Resummed Chiral Perturbation Theory (ReχPT) [12], where
we define the appropriate observables to consider and the treatment of their chiral expansion [12,
13, 14]:

1. Consider a subset of observables that are assumed to have agood overall convergence – we
call them “good observables”. They must form a linear space,which we choose to be that
of connected QCD correlators (of vector/axial currents andtheir divergences) as functions of
external momenta, away from any kinematic singularities. This rule selects in particularF2

P

andF2
PM2

P (P = π,K).

2. Take each observable and write its NLO chiral expansion interms of the chiral couplings :
F0, B0, Li. . .
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Figure 1: Profiles for the confidence levels ofr = ms/m (left) andX(3) = 2mΣ(3)/(F2
π M2

π) (right). In each
case, the results are obtained fromππ scattering only (dashed line),πK scattering only (dotted line), or both
sources of information (solid line).

3. In theses formulae, reexpress the bare couplings in termsof physical quantities (masses,
decay constants. . . ) if justified by physics considerations(e.g., position of unitarity cuts)
The result is called “bare expansion”.

4. In these bare expansions, reexpressO(p2) andO(p4) LECs in terms of:

r =
ms

m
, X(3) =

2mΣ(3)

F2
π M2

π
, Z(3) =

F2(3)

F2
π

, (4.1)

and NNLO remainders, using the bare expansions for the masses and decay constants of the
pseudoscalar mesonsπ,K,η .

This simple recipe provides a resummation of the potentially large effect of the Zweig-rule
violating couplingsL4 andL6 [13, 12], hence the name of “Resummed Chiral Perturbation Theory”
(ReχPT) given to this framework. Since we want to cope with the possibility of a numerical
competition between (formal) LO and NLO terms in chiral series, some usualO(p4) results are not
valid any longer : for instancer = ms/m is not fixed byM2

K/M2
π and can vary from 8 to 40,L5 is

not fixed by the ratio ofFK/Fπ .
In this framework, one can derive the NLO amplitudes corresponding toππ andπK scatter-

ings, which provide information onNf = 2 andNf = 3 patterns of chiral symmetry breaking. The
smallest uncertainties on the chiral expansion are expected to occur in the unphysical region, far
away from the non-analyticities due to unitarity. One can exploit dispersive relations, such as Roy
equations [4] and Roy-Steiner equations [9], to reconstruct the amplitudes in this unphysical point
from the phase shifts from threshold up to energies around 1 GeV. Matching the dispersive and
chiral representations of the amplitude in a frequentist framework provides constraints (in terms
of confidence Levels) on the main parameters of interest for three-flavourχPT [12]. As an illus-
tration, fig. 1 shows the situation forr = ms/m andX(3) = 2mΣ(3)/(F2

π M2
π). A more detailed

analysis provides the following constraints from the combination ofππ andπK scatterings:

r ≥ 14.8, X(3) ≤ 0.83, Y(3) ≤ 1.1, 0.18≤ Z(3) ≤ 1. [68%CL] (4.2)

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
7
0

Surprises and pitfalls in three-flavour chiral extrapolations Sébastien Descotes-Genon

0.2 0.4 0.6 0.8 1
q

1.25

1.5

1.75

2

2.25

2.5
Fpi^2 z3=0.8

0.2 0.4 0.6 0.8 1
q

10

20

30

40

50

60

70

80
Fpi^2Mpi^2 z3=0.8

Figure 2: F̃2
π /F2

π (left) andF̃2
π M̃2

π/(F2
π M2

π) (right) as functions ofq= m̃/ms. Solid, long-dashed and dashed
curves correspond respectively toX(3) = 0.8,0.4,0.2. Thick (thin) lines are drawn forr = 30 (20). We set
Z(3) = 0.8 and NNLO remainders are neglected.

Therefore, one can extract only mild constraints on the parameters of interest from experimen-
tal data : it is far from clear whether the usual description of chiral symmetry breaking, triggered
by a large quark condensation and independent from strange sea-quark effects, holds or not.

5. Three-flavour χPT and lattice simulations

Lattice simulations may suffer from unexpected systematics in chiral extrapolations due to a
strongms-dependence of chiral order parameters, and the resulting numerical competition between
LO and NLO in three-flavour chiral series. But they may also shed some light on this problem,
since they allow one to vary the quark masses, and thus enhance or suppress Zweig-rule violating
contributions accordingly [14]. We consider a lattice simulation with (2+1) flavours : two flavours
are set to a common mass ˜m, whereas the third one is kept at the same mass as the physicalstrange
quarkms. Each quantityX observed in the physical situation(m,m,ms) has a lattice counterpart̃X
for (m̃,m̃,ms). One can study the variation ofF̃2

P andF̃2
PM̃2

P according to

q =
m̃
ms

, r =
ms

m
, X(3) =

2mΣ(3)

F2
π M2

π
, Z(3) =

F2(3)

F2
π

(5.1)

Figure 2 illustrates how the dependence of hadronic observables on quark masses is related to
Zweig-rule violating sea-quark effects: if the latter are large [X(3) = 0.2 < X(2), dashed line], the
curves bend more than in the case of negligible sea-quark loops [X(3) = 0.8∼ X(2), solid line].

Actually, lattice simulations are performed in a finite spatial box, whereas time is sent to
infinity to single out the ground state. For sufficiently large boxes, the low-energy effective theory
is identical toχPT, with the same values of the chiral couplings as in an infinite volume. The
only difference arises in the propagators of the Goldstone modes, so that the chiral series forF̃2

P

and F̃2
PM̃2

P change only through tadpole logarithms. One can extend ReχPT to cope with such a
problem by noting that only a part of finite-volume corrections computed at NLO inχPT has to
involve the physical masses of the Goldstone bosons [14]. The relative finite-volume corrections
for these observables are significant forL = 1.5 fm, but much smaller forL = 2.5 fm. In addition,
the corrections are smaller forF̃2

π M̃2
π than for the decay constant. By inspection, we see thatF̃2

PM̃2
P
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(P = π,K) in large volumes is a quantity for which we manage a good control of finite-volume
effects, whatever the impact of seass̄pairs on the pattern ofNf = 3 chiral symmetry breaking [14].
More specifically, the two ratios:

Rπ =
1
q

F̃2
π M̃2

π
F2

π M2
π

, RK =
2

(q+1)

F̃2
KM̃2

K

F2
KM2

K

, (5.2)

are only mildly affected by finite-volume effects, and theirq-dependence should provide valuable
information on the importance of strange-quark loops. NNLOremainders blur slightly the picture,
but they do not prevent the assessment of the effect.

6. Conclusion

The presence of massivess̄-pairs in the QCD vacuum may induce significant differences in
the pattern of chiral symmetry breaking between theNf = 2 andNf = 3 chiral limits. This effect,
related to the violation of the Zweig rule in the scalar sector, may destabilise three-flavour chiral
expansions numerically and may yield large systematics forchiral extrapolations of lattice data
down to very light quark masses. We have compared the situation in the two- and three-flavour
chiral limits : the combination ofππ andπK data does not favour the usual picture of a large quark
condensation independent of the number of massless flavours. We indicated how chiral extrapo-
lations of lattice results with three dynamical quarks could be affected in the case of significant
differences between theNf = 2 andNf = 3 chiral limits. In addition, we suggested a way to test
this scenario on the lattice, through two dimensionless ratios which prove sensitive to this effect,
with only a mild impact of finite-volume corrections.
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