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The art of smearing – can one reach Mπ = 140MeV in
quenched QCD with clover quarks ?
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Several smearing recipes (APE, stout, and a new LOG smearing) are discussed and compared,
without and with the hypercubic nesting trick, which may be applied to each one of them. While
the U(1) projection in the APE recipe creates a challenge in defining the derivative of the smeared
link with respect to the original one, the latter two recipes yield differentiable fat links. This makes
them interesting for building UV-filtered fermion actions which can be simulated with a HMC
algorithm. This contribution discusses the plaquette distribution and how it is affected by these
recipes and their hypercubic descendents. Subsequently, the issue of how light a pion one may
simulate in the quenched approximation with such low-cost nearly-chiral actions is addressed.
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Figure 1: Dirac operator eigenvalues without smearing and improvement versus with smearing and cSW = 1.

1. Why should one smear ?

A brief answer is: because it is much cheaper to calculate a physical quantity (dimensionless
ratio) in the continuum limit with a pre-defined accuracy, if one uses a UV-filtered (“fat-link”)
fermion action. This contribution discusses the advantages and some of the caveats.

A word on history: Link-fattening has been introduced to reduce taste symmetry violations of
staggered fermions. Shortly after, it was found to be equally useful to tame chiral symmetry break-
ing of Wilson-type fermions – see [1] for details. Fat-link perturbation theory for Wilson/clover
fermions has been pioneered in the second item of [1] and specified in more detail in [2].

In Fig. 1 the eigenvalue spectrum of the plain Wilson operator at am0 = 0 is shown on an
incredibly coarse lattice – the physical branch is barely separated from the remaining four. Upon
including a clover term and some link-fattening the situation changes noticeably: The physical
branch becomes well-separated and moves left, i.e. the additive mass renormalization is reduced.
Moreover, the physical branch gets slimmer, and this suggests that the size of O(a2) ambiguities is
bound to be much smaller. Here and in subsequent plots the same type of smeared links has been
used in the covariant derivative and in the clover term – see [2] for a more complete typology.

2. Four smearing recipes

The first type of smearing, known as APE smearing [3], may be written in factorized form as

UAPE
µ (x) = PSU(3)

{

(1−α)I +
α

2(d−1) ∑
±ν 6=µ

Uν(x)Uµ(x+ν̂)U†
ν (x+µ̂)U†

µ(x)
}

Uµ(x) (2.1)
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Figure 2: Tr(U) of SU(3) matrices (stolen from Mike Creutz) and eigenvalues λ of a U with Tr log(U) 6= 0.

but the U(1) back-projection creates a headache if one wants to use it in a HMC algorithm. There-
fore, Morningstar and Peardon invented the “stout” (subsequently dubbed “EXP”) smearing

UEXP
µ (x) = exp

(α
2 ∑

±ν 6=µ

{

[Uν(x)Uµ(x+ν̂)U†
ν (x+µ̂)U†

µ(x)−h.c.]−
1
3

Tr[.]
}

)

Uµ(x) (2.2)

where this problem is solved. However, it turns out that stout/EXP is not very efficient in taming
the UV noise. Hasenfratz, Hoffmann and Schaefer have proposed to back-project in the APE recipe
to U(3) only, baptizing it n-APE smearing [5]. Another option is the LOG smearing [6]

ULOG
µ (x) = exp

( α
2(d−1) ∑

±ν 6=µ
log[Uν(x)Uµ(x+ν̂)U†

ν (x+µ̂)U†
µ(x)]

)

Uµ(x) (2.3)

which yields a differentiable fat link which is naturally in SU(3), if the configuration is smooth.

3. LOG smearing sub-varieties

On a thermalized background there may be some plaquettes for which Tr log(Uµν(x)) =±2πi.
There are several options how to specify (2.3) completely (in all cases, see [6] for details):

0. Take the principal log in (2.3); the result will be a smeared link in U(3), just as in [5].

1. Replace log[.] → log[.]− 1
3 Trlog[.] in (2.3).

2. Include weights c±ν in the sum in (2.3) which are zero in the case where Tr log(Uµν(x)) 6= 0.

3. Choose the non-principal (“trace-free”) matrix logarithm where the cut is smoothly deformed
such as to maintain Tr log(Uµν(x)) = 0 (see Fig. 2 for an illustration).

4. Add a constraint to the gauge action which prevents plaquettes with ReTr(Uµν(x)) ≤−1.

4. Hypercubic nesting trick

Clearly, upon iterating the smearing the benefits may be enhanced, but the delocalizing effect
gets enhanced, too. A neat strategy is the hypercubic nesting trick [7] where three iterations are
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Figure 3: Histogram of 1−ReTr log(Uµν)/3 without smearing (black) and after 1 APE/EXP/LOG smearing
(left) or their hypercubically nested descendents (right). Equivalent parameters have been used (see text).

nested in such a way that the final link depends only on the thin links in the adjacent hypercube.
Originally, it was formulated for the APE core recipe, and it has been generalized to the EXP and
LOG recipes in [2] and [6], respectively. The result will be called HEX and HYL smearing.

5. Impact on plaquette distribution

One way to obtain detailed information about the efficiency of a given smearing recipe is to
monitor how it affects the plaquette distribution ρ(1−ReTr(U)/3). Without smearing the distri-
bution bears some similarity with the black body radiation: ρ(s) is essentially a power-law at low
s and close to an exponential fall-off at large s (for low β the constraint s ≤ 1.5 is perceptible).

With smearing the distribution is essentially shifted to the left, towards “colder temperature”
(though there is no equivalent of the Wien law, as the distribution is not specified by a single
parameter). In Fig. 3 the change is shown after one step of APE/EXP/LOG smearing. Clearly,
EXP is less efficient than APE. On the other hand, LOG is better or equally efficient as APE,
depending on whether one looks at large or extremal plaquettes. From the right-hand panel a similar
conclusion is drawn if each one of these recipes is used in a hypercubically nested arrangement. In
these graphs the equivalent of αAPE = 0.6 and αHYP = (0.75,0.6,0.3) has been used.

6. Impact on residual mass

One way (the simplest, not necessarily the best one) to quantify the amount of chiral symmetry
breaking is to measure the residual mass, here defined as the PCAC mass at am0 = 0.

The main result of [2] is convincing evidence that the two well-known tricks to reduce the
amount of chiral symmetry breaking – link-fattening and clover improvement – would amplify
when applied together. Put in a populist manner: When cSW = 1 would reduce amres by a factor 2
and a certain type of smearing would reduce it by a factor 7, then the two effects would enhance
each other, so 2× 7 could be as much as 26. An obvious need is thus to determine how the new
LOG/HYL smearing fares in this respect and to compare it to the established recipes.

At this point it seems appropriate to give action and algorithm details. The investigation has
been carried out with Wilson glue and quenched tree-level clover fermions, i.e. cSW = 1. Point
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Figure 4: Typical residual norm history in the EO preconditioned BCGγ5-algorithm. See text for details.

sources and sinks were used, and the inversions aimed at ||r|| < 10−12. I have implemented three
algorithms: conjugate gradient on normal equations (CGNE), conjugate gradient on the hermitean
Dirac operator (CGH), bi-conjugate gradient on an operator with γ5-symmetry (BCGγ5). Since EO-
preconditioning leads to a reduced operator Dred = 1

2(Doo −DoeD−1
ee Deo) which is γ5-symmetric,

the same algorithms may be used again. It is well known that the fastest algorithm out of these,
BCGγ5, suffers from instabilities, due to round-off errors, which often prevent proper convergence.
I find that I can make this algorithm perform satisfactorily, upon applying three tricks:

1. Do the summation in indefinite scalar products in quadruple precision (everything else in
double precision).

2. Recompute the true residual much more frequently than one would do in an algorithm with
standard scalar products.

3. Keep track of the vector which lead to the smallest residual, and restart from it if certain
conditions are met (e.g. ||r|| > 103||rbest|| and last restart dates back at least 500 steps).

A typical convergence history (in a case without restart) is shown in Fig. 4. The high precision
seems essential to enter the regime with superlinear convergence.

The results for amres at m0 = 0 for β = 5.6,5.8,6.0,6.2 and with one step of APE/EXP/LOG
or HYP/HEX/HYL smearing with the equivalent of αAPE = 0.6 and αHYP = (0.75,0.6,0.3) are
tabulated in [6]. They are shown in graphical form in the two panels of Fig. 5. It turns out that
the 1-loop perturbative prediction for amres of UV-filtered clover fermions in [2] applies to the
LOG/HYL smearing, too. Hence, it seems natural to fit the data with the ansatz

amres =
{4.90876

1.98381

} g2
0

12π2
1+ c1g2

0

1+ c2g2
0

(6.1)

and such fits are included in Fig. 5, together with the respective linear asymptotic slope and the
asymptotic counterparts for unfiltered Wilson/clover fermions. The bottom line is that LOG/HYL
fares at least as good as APE/HYP, and these are considerably better than EXP/HEX.

7. How light can one go ?

An obvious questions is “how light can one go with fat-link clover fermions at a ∼ 0.1fm or
a ∼ 0.05fm ?” and, along with it, “what is the (possibly hidden) price to pay ?”.
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Figure 5: amres versus g2
0 after 1 APE/EXP/LOG smearing (left) or their hypercubically nested descendents

(right). The non-perturbative values are fitted to the ansatz (6.1) which obeys the respective 1-loop pertur-
bative asymptotic constraint (dashed slope at the bottom). The non-perturbative data for β ≥ 6.0 (left) or
β ≥ 5.8 (right) lie beneath the 1-loop predictions for cSW = 0 and cSW = 1 thin-link Wilson/clover fermions.
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Figure 6: Pion correlators at am0 = 0 and β = 6.3 with 3 HYL steps and resulting PCAC mass plateau.

Upon adding “... without dialing a negative bare mass” the first question can be answered
without difficulties. With am0 = 0 one finds amres = 0.0110(7) at β = 6.0 and amres = 0.0068(3)

at β = 6.2, if 3 steps of HYL smearing with the standard parameter αHYL = (0.75,0.6,0.3) are used.
Fig. 6 shows (for 3 HYL steps and an even higher β ) the correlators and the PCAC mass. While
the former become quite fuzzy at such a small quark mass, the latter stays remarkably quiet. Upon
converting these values into physical units (mPCAC = 0.0110× 2.12GeV = 23MeV and mPCAC =

0.0068×2.91GeV = 20MeV), one feels tempted to speculate that Mπ ' 320MeV is a natural limit
for 3 HYL actions with am0 = 0. Note that no attempt has been made to quantify the systematics.

8. How much smearing is “optimal” ?

With these figures at hand, it is natural to ask whether some additional smearing would allow
to reach the physical pion mass, while still keeping am0 = 0. Indeed, exploratory runs with 7 HYL
steps suggest that such actions yield Mπ ' 160MeV at am0 = 0. While in principle any fixed type
of smearing yields a legal action (see e.g. the discussion in [2]), it is clear that very high smearing
levels may again lead to an action with suboptimal scaling properties. In the absence of a detailed
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study, choosing a modest amount of smearing (e.g. 1 step of HYL) is certainly a reasonable strategy.
In any case it is clear that this is an engineering issue and not a fundamental one.

9. Summary

1. Smearing is medicine against UV-noise; one should try to avoid both under- and overdosing.
What exactly is the “optimum” amount of smearing (to compute a given observable with a
predefined error in the continuum limit with a minimal amount of CPU time) could only be
determined through a multi-action scaling study, but it is definitely not zero.

2. Criteria one may ask for, when selecting the core recipe, include: (i) whether it smears
efficiently (satisfied by APE, n-APE, LOG), (ii) whether the link is differentiable (EXP, n-
APE, LOG), (iii) whether the link is in SU(3) (APE, EXP, LOG). The last point is mostly
esthetic, albeit it might facilitate agreement with perturbation theory. Whenever possible,
one should use hypercubic nesting.

3. Comparison of different smearing recipes and/or parameters may proceed via the plaquette
distribution or via the signal-to-noise ratio of a physical correlation function.

4. Clover improvement and HYL-smearing together yield Wilson fermions with much reduced
chiral symmetry breaking (mutatis mutandis with staggered fermions: Naik term and taste
breaking). The main conclusion is that the new LOG/HYL smearing provides powerful
means to build UV-filtered actions suitable to simulate full QCD with a HMC algorithm.
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