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1. Introduction

The main target of lattice studies of the Higgs-Yukawa sector of the electroweak standard
model is the non-perturbative determination of theΛ-dependence of the upper and lower bounds
of the Higgs boson mass [1, 2] as well as its decay properties,whereΛ denotes the cut-off of the
theory. There are two main developments which warrant to reconsider these questions: first, with
the advent of the LHC, we are to expect that properties of the standard model Higgs boson, such
as the mass and the decay width, will be revealed experimentally. Second, there is, in contrast
to the situation of earlier investigations of lattice Higgs-Yukawa models [3, 4, 5, 6], a consistent
formulation of an Higgs-Yukawa model with an exact lattice chiral symmetry [7] based on the
Ginsparg-Wilson relation [8], which allows to establish a lattice version of chiral symmetry while
lifting the unwanted fermion doublers at the same time.

Before addressing the questions of the Higgs mass bounds anddecay properties, we started
with an investigation of the phase structure of the model in order to obtain first information about
the region of the (bare) couplings in parameter space where eventual simulations of phenomeno-
logical interest should be performed.

In the present paper we basically summarize some of the most important results of our work
on the model’s phase structure, which we have studied analytically in the largeNf -limit for small as
well as for large values of the Yukawa coupling constant [9],and numerically by means of HMC-
simulations [10]. Finally, we give a brief outlook towards some first and very preliminary results
on the upper Higgs boson mass obtained at one selected cut-off Λ.

2. The model and its numerical treatment

The model, we consider here, is a four-dimensional, chirally invariantSU(2)L×SU(2)R Higgs-
Yukawa model discretized on a finite lattice withL lattice sites per dimension. The model contains
one four-component, real Higgs fieldΦ andNf fermion doublets represented by eight-component
spinorsψ(i), ψ̄(i), i = 1, ...,Nf with the total action being decomposed into the Higgs actionSΦ,
and the fermion actionSF . It should be stressed here thatno gauge fieldsare included within this
model.

The fermion actionSF is based on the Neuberger overlap operatorD(ov) [11] and can be written
as

SF =
Nf

∑
i=1

ψ̄(i)

[

D
(ov) +yNB ·

(1− 1
2ρ

D
(ov)
)

︸ ︷︷ ︸

M

]

ψ(i), Bn,m = 1n,m

[
(1− γ5)

2
φn +

(1+ γ5)

2
φ†

n

]

.

(2.1)
It describes the propagation of the fermion fields as well as their coupling to the Higgs fieldΦ
through the Yukawa coupling matrixBn,m and the Yukawa coupling constantyN. Here the Higgs
field Φn was rewritten as a quaternionic, 2×2 matrixφn = Φ0

n1− iΦ j
nτ j , with~τ denoting the vector

of Pauli matrices, acting on theSU(2) index of the fermionic doublets.

Note that in absence of gauge fields the Neuberger Dirac operator can be trivially constructed
in momentum space, since for that case its eigenvaluesνε(p), ε = ±1 for the allowed four-
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component momentap ∈P are explicitly known. This will be exploited in the numerical con-
struction of the overlap operator.

The model then obeys an exact, but lattice modified, chiral symmetry according to

δψ(i) = iεγ5

(

1−
1
ρ

D
(ov)
)

ψ(i), δφ = 2iεφ , δψ̄(i) = iεψ̄(i)γ5, δφ† =−2iεφ† (2.2)

recovering the chiral symmetry in the continuum limit [7].
The lattice Higgs actionSΦ is given by the usual lattice notation

SΦ =−κN ∑
n,µ

Φ†
n

[
Φn+µ̂ + Φn−µ̂

]
+∑

n
Φ†

nΦn + λN ∑
n

(
Φ†

nΦn−Nf
)2

(2.3)

with the only particularity that the fermion generation numberNf appears in the quartic coupling
term which is a convenient convention for the largeNf analysis. However, this version of the lattice
Higgs action is equivalent to the usual continuum notation [10].

For the numerical treatment of the model we have implementedan Hybrid-Monte-Carlo (HMC)
algorithm forevenvalues ofNf with Nf/2 complex pseudo-fermionic fieldsω j according to the
HMC-Hamiltonian

H(Φ,ξ ,ω j) = SΦ[Φ]+
1
2

ξ †ξ +
Nf /2

∑
j=1

1
2

ω†
j

[
MM

†]−1ω j (2.4)

whereξ denotes the real momenta, conjugate to the Higgs fieldΦ. Since we focus here on checking
the validity of our analytical investigation of the phase structure, which was determined in the large
Nf -limit, the restriction to evenNf does no harm. For the further details of this HMC algorithm we
refer the interested reader to Ref. [10].

The observables we will be using for exploring the phase structure are themagnetization m
and thestaggered magnetization s,

m=

[
3

∑
i=0

∣
∣
∣

1
L4 ∑

n
Φi

n

∣
∣
∣

2
] 1

2

, s=

[
3

∑
i=0

∣
∣
∣

1
L4 ∑

n
(−1)

∑
µ

nµ
·Φi

n

∣
∣
∣

2
] 1

2

(2.5)

and the corresponding susceptibilitiesχm = L4 ·
[
〈m2〉− 〈m〉2

]
andχs = L4 ·

[
〈s2〉− 〈s〉2

]
, where

〈...〉 denotes the average over theΦ-field configurations generated in the Monte-Carlo process.
To locate the phase transition points, we decided to fit the data for the susceptibilitiesχm, χs

as a function ofκN according to the – partly phenomenologically motivated – ansatz

χm,s = Am,s
1 ·

(

1

L−2/ν +Am,s
2,3(κN−κm,s

crit )
2

)γ/2

, (2.6)

whereAm,s
1 , Am,s

2,3 , andκm,s
crit are the fitting parameters for the magnetic susceptibility and staggered

susceptibility, respectively, andν , γ denote the critical exponents of theΦ4-theory. HereAm
2,3

(As
2,3) is actually meant to refer to two parameters, namelyAm

2 (As
2) for κN < κm

crit (κN < κs
crit) and

Am
3 (As

3) in the other case, such that the resulting curve is not necessarily symmetric. The phase
transition point is then given at the value ofκN = κm

crit (κN = κs
crit) where the magnetic (staggered)

susceptibility develops its maximum.
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3. Large Nf -limit for small Yukawa coupling parameters

The phase structure of the considered Higgs-Yukawa model can be accessed in the largeNf -
limit by scaling the coupling constants and the Higgs field itself according to

yN =
ỹN
√

Nf
, λN =

λ̃N

Nf
, κN = κ̃N , Φn =

√
Nf · Φ̃n , (3.1)

where the quantities ˜yN, λ̃N, κ̃N, andΦ̃n are kept constant in the limitNf →∞ allowing to factorize
the fermion generation numberNf out of the effective actionSe f f[Φ] = SΦ−Nf logdet(M ).

One is thus left with the problem of finding the absolute minima of Se f f [Φ] in terms of the
latter quantities. For sufficiently small values of the Yukawa and quartic coupling constants the
kinetic term of the Higgs action becomes dominant allowing to restrict the search for the absolute
minima ofSe f f [Φ] to the ansatz

Φn = Φ̂ ·
√

Nf ·

(

m̃+ s̃· (−1)
∑
µ

nµ
)

, Φ̂ ∈ IR4, |Φ̂|= 1 (3.2)

taking only a magnetization ˜m and a staggered magnetization ˜s into account. After some work,
which was presented in detail in [9], one finally finds for the effective action

Se f f[Φ] = −Nf · ∑
p∈P

log

[(
∣
∣ν+(p)

∣
∣ ·
∣
∣ν+(℘)

∣
∣+

ỹ2
N

4ρ2

(
m̃2− s̃2) ·

∣
∣ν+(p)−2ρ

∣
∣ ·
∣
∣ν+(℘)−2ρ

∣
∣

)2

+ m̃2 ỹ2
N

4ρ2

(∣
∣ν+(p)−2ρ

∣
∣ ·
∣
∣ν+(℘)

∣
∣−
∣
∣ν+(℘)−2ρ

∣
∣ ·
∣
∣ν+(p)

∣
∣

)2
]2

+SΦ[Φ], (3.3)

while the Higgs action in this setting reads

SΦ = Nf ·L
4 ·

{

−8κ̃N

(

m̃2− s̃2
)

+ m̃2+ s̃2 + λ̃N

(

m̃4 + s̃4 +6m̃2s̃2−2
(
m̃2 + s̃2)

)
}

. (3.4)

The resulting phase structure in the largeNf -limit can then be determined by minimizing the
effective action with respect to ˜mands̃. It is presented in Fig. 1a for the selected value of the quartic
coupling constant̃λN = 0.1 andL = ∞. Here we distinguish between the following four phases:

(I) Symmetric (SYM):m̃= 0, s̃= 0 (II) Ferromagnetic (FM): ˜m 6= 0, s̃= 0
(III) Anti-ferromagnetic (AFM):m̃= 0, s̃ 6= 0 (IV) Ferrimagnetic (FI): ˜m 6= 0, s̃ 6= 0

In Fig. 1b we compare this analytically obtainedNf = ∞, L = ∞ phase structure with the re-
sults of corresponding HMC-simulations performed on 84- and 64-lattices atNf = 10. As expected
we observe a good qualitative agreement between the numerical and analytical results. On a quan-
titative level, however, the encountered deviations in Fig. 1b need to be further addressed. These
deviations can be ascribed to finite volume effects as well asfinite Nf corrections.

The finite size effects are illustrated in Fig. 2a, showing some phase transition points from the
FM to the SYM phase as obtained from our numerical simulations on a 44-lattice (open squares),
and on an 84-lattice (open circles) for the (very large) value of fermion generationsNf = 50, chosen
to isolate the finite size effects from the 1/Nf corrections. One clearly observes that the phase
transition line is shifted towards smaller values of the hopping parameter when the lattice size is
increased. The numerical results are compared to theNf = ∞ phase transition lines obtained for
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Figure 1: Phase diagrams with respect to the Yukawa coupling constantỹN and the hopping parameterκ̃N

for the constant quartic coupling̃λN = 0.1. The black solid line indicates a first order phase transition, while
the remaining transitions are of second order [10]. (a) Analytically obtained phase diagrams forL = ∞ and
Nf = ∞. (b) Comparison with numerically obtained phase transition points forNf = 10 andL4 = 84 (open
squares) andL4 = 64 (open circles).
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Figure 2: (a) Some selected phase transition points between the ferromagnetic and the symmetric phase, as
obtained atNf = 50 on a 44-lattice (open squares) and on an 84-lattice (open circles), are compared to the
L = 4 (dotted),L = 8 (dashed), andL = ∞ (solid) phase transition lines determined analytically inthe large
Nf -limit. (b) Nf -dependence ofκm

crit, κs
crit at ỹN = 2.0 as obtained on an 84-lattice (open squares) and on a

64-lattice (open circles). The analytical, finite volume, largeNf predictions for the SYM-FM (SYM-AFM)
phase transitions are represented by the dashed (dotted) lines. The dash-dotted lines are fits of the numerical
data to linear functions as explained in the main text. In both plotsλ̃N = 0.1 was chosen.

L = 4 (dotted line),L = 8 (dashed line), andL = ∞ (solid line). These analytically obtained lines
perfectly describe the numerical results and one clearly observes the convergence of the numerical
results to the analytically predictedL = ∞ line as the lattice size increases.

The Nf -dependence of the numerically obtained critical hopping parametersκm
crit andκs

crit is
shown in Fig. 2b for ˜yN = 2 . One clearly sees that for increasingNf the numerical results converge
very well to the analytical finite volume predictions, as expected. It is interesting to note that the
leading term in the finiteNf corrections,i.e. the 1/Nf contribution, seems to be the only relevant
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correction here, even at the small valueNf = 2, as can be seen in Fig. 2b by fitting the deviations
to the function fm,s(Nf ) = Am,s/Nf with Am,s being the only free parameter. Furthermore, one
observes that the critical hopping parameterκm

crit is shifted towards larger values with decreasing
Nf while κs

crit is shifted towards smaller values.

For an investigation of the model at large values of the Yukawa coupling constant see Refs. [9,
10].

4. Outlook towards Higgs mass bounds

In contrast to the previous discussion, where we consideredthe model mostly in the largeNf -
limit, we now turn towards the physically interesting situation Nf = 1. In order to investigate the
model also at odd values ofNf we have implemented a PHMC-algorithm, which we will discuss
in detail in an upcoming publication.

The main goal here is to compute the cutoffΛ-dependence of the Higgs boson mass by fixing
the top quark mass and the vacuum expectation valuev to their phenomenologically known values,
i.e. mtop = 175GeV andv = 246GeV. From this dependence one can eventually determine an
upper bound of the Higgs boson mass. Thev measured on the lattice has to be renormalized by the
Goldstone renormalization factorZG which can be obtained from the Goldstone-propagatorG(p̂2)

according to

G−1(p̂2) =
p̂2

ZG
(4.1)

with p̂2 denoting the squared lattice momentum. For the chosen setting (κN = 0.240,yN = 0.711,λN =

1.0) we obtainZG = 0.9662±0.0001 from the inverse Goldstone-propagator, plotted in Fig. 3a, and
Λ = (1684±14)GeV. In Fig. 3b we show one selected component of the fermion correlator〈ψt1ψ̄t2〉

yielding the top massmtop = (170±6)GeV in accordance with the phenomenological value.

p̂2

G
−

1
(p̂

2
)
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〉

302520151050

0.3

0.25

0.2

0.15

0.1

0.05

0
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Figure 3: (a) Inverse Goldstone propagatorG−1(p̂2) versus the squared lattice momentum ˆp2 fitted to a
linear function. (b) Fermion time slice correlator〈ψt1ψ̄t2〉 versus distance in time direction∆t = |t2− t1|
fitted to acosh-function.

In the presented setup we chose the relatively large value ofthe quartic coupling constant
λN = 1, aiming for an upper Higgs mass bound. In Fig. 4a we present the corresponding result for
the Higgs correlator〈Φt1Φt2〉 versus∆t. We determine the Higgs mass by calculating the effective

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
7
5

The phase structure of a chirally invariant lattice Higgs-Yukawa model Philipp Gerhold

massmeff
H at several values of∆t and finding its plateau value as shown in Fig. 4b. From this setup

we findmH = (565±15)GeV.
However, we remark that here we give only a first and very preliminary result towards our goal

mentioned above. In particular, the valueL ·mtop = 1.62 is too small to determine the top quark
mass reliably. Furthermore, the statistics (2500 configurations for the Higgs analysis) is still to low
to obtain sufficiently precise results for the physical quantities of interest.

∆t = |t2 − t1|

〈Φ
t 1
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t 2
〉
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eff H
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Figure 4: (a) Higgs time slice correlator〈Φt1Φt2〉 versus∆t fitted to acosh-function. (b) Effective masses
meff

H at ∆t fitted to plateau valuemH.
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