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1. Introduction

The centre vortex model [1] has been proposed as an exmanaticonfinement in non-
abelian gauge theories. Centre vortices, quantised maghet lines, compress the gluonic flux
into tubes and cause a linearly rising potential at largeusgipns. Numerical evidence has been
produced to support this assumption [2], and in additiomuktions have indicated that vortices
could also account for phenomena related to chiral sympich as topological charge and spon-
taneous chiral symmetry breaking (SCSB)[3, 4, 5, 6].

These non-perturbative features of the QCD vacuum are atdiiy linked to the properties of
the low-lying spectrum of the Dirac operator. The Atiyam@ar index theorem [7] states that the
topological charge of a gauge field equals the index of thadwperator, while the Banks-Casher
relation [8] sets the spectral density of the near-zero m@ueportional to the chiral condensate,
the order parameter for SCSB.

The fundamental problems of investigating chiral symmetryhe lattice have been overcome
by the invention of overlap fermions. The overlap operatmeys the Ginsparg-Wilson relation and
features an exact chiral symmetry [5]. It further implensemiattice version of the index theorem
[6], and may even be used for the definition of a local topaalytharge density [3].

In this paper, we work with SU(2) and report on our calculadiavith the overlap operator
applied to thick classical centre vortices in the shapeslarigs (closed by lattice periodicity)
and spheres. We investigate the localisation of zero-medtsrespect to the position of the
thick vortices and find an interesting discrepancy in th@logical charge determined by different
methods. The details of the individual vortex types will igcdssed along with our results.

2. Topological Charge

We compare different definitions of the lattice topologicharge:

(1) The topological charge of the continuum gauge field caméiion for our rather simple
vortex geometries amounts to adding up the contributiom® the intersection points, which
according to the colour orientation carry a cha@e- i%.

(2) The index of the overlap Dirac operator [6, 9]. Accordinghe Atiyah-Singer index theorem
the topological charge is given by the index

iNndD[Al=n_—n,. =Q (2.1)

wheren_ andn, are the number of left- and right-handed zeromodes of thacDiperator
[7]. The overlap Dirac operator is defined by

1
D = S[L+ye(H) (2.2)
Here, € is the sign functionJ—IL+ = yDw(—mp) and Dy, is the usual lattice Wilson Dirac

operator with mass-mp (we usemg = 1.0). It has been shown that this fermionic definition
of Q coincides with the continuum simple gluonic definition ie ttontinuum limit [10].
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The lattice version of the index theorem is only valid as lasghe gauge field satisfies a so-
called “admissibility” condition. This condition assuréatH," has no zero eigenvalues so
that the sign-function is well-defined. It requires that ptequette-valuetl,,, are bounded
close to triviall. A sufficient, but not necessary bound for the “admissiilaf the gauge
field is [11, 12]

tr(1—Up,) < 0.03 (2.3)

(3) The gluonic charge in the plaquette and hypercube definit3], measured after cooling.

the quantity which determines the affiliation to a homotofass, the topological charge
or (negative) Pontryagin index reads for trivial boundaopditions[14, 15]

1 ~
Q= [d™x () = ~ 35 [ XU Fpw Fun) = (2.4)
1 . .

The topological charge densityx) is the total derivative of the topological curreqt
1 2

For smooth gauge fields one can apply the Gauss-theoremrmsfdran the expression f@
into a surface integral

Q:/d4xq(x) :fssdauku. 2.8)

For x?> — o we assume a sufficiently fast decaying field strength, so.fhat = 0 implies
ig '

Q= ey ?{§dautr[dvdpdg]. (2.9)

By a gauge transformatio2(x) we can put the free gauge field at infinity to zero
0=a/[(x* = ) = QT (X) [ (X) —10]QX) = (¥ — ) =i9,Q0". (2.10)

The pure gauge potentia¥, in Eq. (2.10) maps a 3D volume elemeix,dx,d, at infinity
to a volume element

.04, oy A 50% A% 0y = 0,201 9,0Q" 9,07 dx, dx,ds (2.11)

in SU(2) group space. The requirement that the gauge tranafmnQ(x) is smooth implies
that the topological charg® in Eq. (2.9) is integerQ € Z. Q measures the number of
timesQ(x) wraps around the group whercovers the spacetime surfaggat x> — o once.
Choosing bases in the tangent spaces of theStmanifolds, we can define an orientation
of the map. Thu€) can take positive and negative values.
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Geometry Topological charge density Fermionic density

Figure 1: Plane vortices on a fdattice in xy- and zt-planes intersect in four points giyiise to topological
charge and localised fermionic density.

3. Description of configurations and results

3.1 Plane vortices

Planar vortices are constructed as explained in [16]. Abdar boundary conditions they al-
ways come in pairs and therefore are automatically closédhree definitions of) yield identical
results for all configurations containing only plane vatic

In fig. 1 we show the topological charge density for a gauge fiehsisting of 2 orthogonal
pairs of plane vortices, which intersect in 4 points, eachluth gives rise to a lump of topological
chargeQ = 1. We also show the scalar fermionic density of the two zerasodur result is in
agreement with the analytical solution for the zeromodeseqmted in [17].

3.2 Spherical vortices

We distinguish between an orientable and a non-orientgdblerical vortex.

1. The non-orientable spherical vortex of radiRiand thicknes4 is constructed with the fol-

lowing links:
exp(ia([fr—to)A-0) t=1u=4
U, (xv) = [PIa(F=To)-8) t=1p a1
1 elsewhere
r—To
nr,t) = 3.2
) = 7 (32)
where the functior is either one fromo ., a_, which are defined as
0 r<R-%
a,(r) = ’—;(1—%*) R-4<r<R+4 (3.3)
m R+5<r
m r<R-%
a.(N={3(1+58) R-4<r<R+} (3.4)
0 R+5<r
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Figure 2: Thick spherical SU(2)-vortex (hedgehog, non-orientabte) variation of its link phasex( )

This means that all links are equal toexcept for the-links in a single time-slice at fixed

t = 1. The phase changes from Ondrom inside to outside (or vice versa). The graph of
a_(r) for our largest lattice 40x 2 is shown in fig. 2b. The traces of all plaquettes are close
to unity, t(1 —Uy,) <1— cosl—’g = 0.015. In our computationgR is set to half the lattice
size, andA is chosen such that only 3 links along any direction are etuall and —1,
respectively. The colour vect@irchanges according to the spatial direction (see fig. 2a).

2. The orientable vortex is constructed in a similar way:

Up(xY) = {exp(ia(l?—f’ol)|ni|cfi) t=1u=4 .

1 elsewhere

The distinction non-/orientable [18] refers to the ori¢iata of the vortex surface assigned by
abelian projection. While the orientable vortex has a dlob&ntation, the nhon-orientable vortex
consists of 2 patches of opposite orientation separatedclpsad monopole worldline (fig. 3).

Figure 3: Non-orientable vortex surface () leads to monopole lirfésr @belian projection (r)

For a spherical vortex alone, the topological charge medson the unsmoothed links is
vanishing, since only the;, a = X,y,z plaguettes are non-zero, which gives a zero

Q ~ €uvpoUwUpo (3.6)
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Figure 4: For configurations with an orientable vortex the action shas during cooling and no topological
charge is measured (), whereas for non-orientable vomefigurations the topological charge rises to 1
while the actiorSreaches a (non-zero) plateau (r). The data is taken fromi-dattite.

This is independent of the lattice constant and thus hokisialthe continuum limit.
For the orientable vortex, the topological charge aftelingaand the overlap index are also equal
to zero, in keeping with the continuum expectation (seediefjram of fig. 4).

However, we find a discrepancy in the case of the non-oriémgihere vortex.
First, during cooling the topological charge rises neatfofor a.. (right diagram of fig. 4) while
the actionSreaches a (non-zero) plateau. Further, the index of thdagveperator is also non-zero,
ind D = 1 for a... Details are given in the table below:

type n.|n_|indD=n_—n.
non-orientableg_ 3| 4 1
non-orientableg 11 0 -1
orientable,a o O 0

The non-orientable vortex also gives extra contributianthé index when it is combined with
other vortices, possibly including intersection pointsatiproduce “real” topological charge.

The discrepancy between overlap index and continuum tgmalbcharge is not due to the
coarse discretisation. We have used lattice sizesMith 2 andNs ranging from 8 to 40 in steps of
4 [19]. ForNs > 40, we satisfy the admissibility condition (2.3), but ousultss remain unaltered.

More generally, the following empirical rule can be formteldk Non-orientable spherical vor-
tices in slices (3D volumes) of the lattice contribute toledaopological charge and Dirac oper-
ator index with an integer given by the “winding number” [9]tbe corresponding Wilson lines,
mapping the 3D volume of the slice to the SU(2) manifold of ¥kison lines. To compute this
“winding number”, thet-links are seen as a map not fraift, but from the compactified time-slice
t = 0, in which the sphere is located, to SU(2). The time-sliae lma compactified t&* because
the links outside the sphere are all equai-b.
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4. Conclusion

For non-orientable spherical vortices, the index of thelageDirac operator differs from the
topological charge in the continuum limit. The reason fa seeming contradiction is the singular
nature of the continuum gauge field equivalent to our sphkviartex. This singularity invalidates
the usual derivation of the index theorem.
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