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1. Introduction

In Quantum Chromodynamics (QCD), the ground state must be theθ vacuum in order to
ensure the cluster decomposition property of physical observables. However, in unquenched lattice
QCD simulations by Hybrid Monte Carlo algorithm [1], the correct sampling of topological charge
will become increasingly more difficult [2, 3]. In view of this situation, one promising approach is
to fix the topology during the Hybrid Monte Carlo simulation and try to extract physics from the
simulations at a fixed topological chargeQ. It is known that the fixed Q effect is a finite size effect
which vanishes in the infinite volume limit. In this report, we give a theoretical basis for estimating
the finite size effect in order to extract physics in theθ vacuum from QCD at fixed topology [4] ,
by extending the work by Brower et al. [5]. We derive a general formula to estimate this relation.
Furthermore, using our formula, we propose a method to measure the topological susceptibility at
fixed topology. The numerical study is given in a separate reports [6, 7].

2. General formula

Consider the partition function in theθ vacuum defined by

Z(θ) ≡ 〈θ |θ〉 = exp[−VE(θ)], (2.1)

whereE(θ) is the vacuum energy density. The topological susceptibilityχt at θ = 0 is defined by

χt =
〈0|Q2|0〉

V
=

d2E(θ)
dθ 2

∣∣∣∣
θ=0

. (2.2)

Sinceχt ≥ 0 by definition,θ = 0 is a local minimum ofE(θ). Moreover, Vafa and Witten proved
that Z(0) > Z(θ) [8], so thatθ = 0 is the global minimum of the functionE(θ). Assuming
analyticity ofE(θ) nearθ = 0, we can expandE(θ) as

E(θ) =
∞

∑
n=1

c2n

(2n)!
θ 2n =

χt

2
θ 2 +O(θ 4). (2.3)

The partition function at a fixed topological chargeQ is a Fourier transformation ofZ(θ)

ZQ =
1

2π

∫ π

−π
dθ Z(θ)exp(iθQ) =

1
2π

∫ π

−π
dθ exp(−VF(θ)), (2.4)

whereF(θ) ≡ E(θ)− iθQ/V. For a large enough volume, we can evaluate theθ integral in (2.4)
by the saddle point expansion. The saddle pointθc is given by

θc = i
Q

χtV
(1+O(δ 2)), (2.5)

whereδ ≡ Q/(χtV). We then expandF(θ) as

F(θ) = F(θc)+
E(2)

2
(θc)(θ −θc)2 +

∞

∑
n=3

E(n)(θc)
n!

(θ −θc)n, (2.6)
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whereE(n) is then-th derivative ofE(θ) with respect toθ at θ = θc, and is given by

VF(θc) =
Q2

2χtV
(1+O(δ 2)), E(2)(θc) = χt(1+O(δ 2)), (2.7)

E(2n)(θc) = c2n(1+O(δ 2)), E(2n−1)(θc) = θcc2n(1+O(δ 2)). (2.8)

By a change of variables=
√

E(2)V(θ −θc) we can rewrite the integral as

ZQ =
e−VF(θc)

2π
√

E(2)V

∫ √
E(2)V(π−θc)

−
√

E(2)V(−π−θc)
dsexp

[
−s2

2
− ∑

n=3

E(n)V
n!

(
s√

E(2)V

)n
]

(2.9)

Neglecting exponentially suppressed terms and expanding in powers of1/V, we obtain

ZQ =
1√

2πχtV
exp

[
− Q2

2χtV

][
1− c4

8Vχ2
t

+O

(
1

V2 ,δ 2
)]

. (2.10)

This shows that, as long asδ ¿ 1 (equivalently,Q ¿ χtV), the distribution ofQ becomes the
Gaussian distribution. Similarly, consider an arbitrary correlation function inθ vacuum and at
fixed topological chargeQ are defined as

G(θ) = 〈θ |O1O2 · · ·On|θ〉, GQ =
1

ZQ

1
2π

∫
dθZ(θ)G(θ)exp(iθQ). (2.11)

Using the saddle point expansion as before, ifG is CP-even, we can show

Geven
Q = G(0)+G(2)(0)

1
2χtV

[
1− Q2

χtV
− c4

2χ2
t V

]
+G(4)(0)

1

8χ2
t V2

+O(V−3),

(2.12)

whereG(n)(0) stands for the n-th derivative ofG with respect toθ . If G is CP-odd, we have

Godd
Q = G(1)(0)

iQ
χtV

(
1− c4

2χ2
t V

)
+G(3)(0)

iQ

2χ2
t V2

+O(V−3). (2.13)

The formula (2.12) provides an estimate of the finite size effect due to the fixed topological
charge. The leading correction is of orderO(1/V). It should be also noted that the other formula
(2.13) suggests that it is possible to extract theθ dependence of CP-odd observables, such as the
neutron electric dipole moment by measuring the observable at a fixed non-zero topological charge,
once the topological susceptibilityχt is obtained.

3. Topological susceptibility

There are two reasons for measuring topological susceptibility. The primary reason is to study
whether the local topological fluctuation is sufficiently created in unquenched QCD simulations.
In conventional quenched QCD simulations, the topology change during Monte Carlo updates
is triggered by the formation of dislocations which grows into local topological fluctuation with
positive or negative topological charge. This is a topology non-conserving processes through lattice
artifact. On the other hand, in unquenched simulations such process is highly suppressed towards
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continuum and chiral limit. In particular, unquenched simulations by the JLQCD collaboration
explicitly prohibits such processes by introducing extra Wilson fermions [9]. Then, the main source
of the local topological fluctuation is achieved through the pair creation of local fluctuation of
positive and negative topological charge densities, just as in the continuum theory. Therefore,
the measurement of the topological susceptibility is a crucial test of the thermal equilibrium in
local topological fluctuation. The secondary reason is that the topological susceptibility is the key
quantity to estimate the finite size effects at fixed topology as was shown in the previous section.

Recently, there are several proposals for the field theoretical definitions of the topological
susceptibility, which are free from ambiguities. The first one is given by Giusti et al. [10] in
which they define the topological susceptibility by the integration of disconnected flavor-singlet
pseudoscalar correlator. The second one is a UV divergence free definition by Luscher [11] in
terms of n-point function of flavor non-singlet scalar and pseudoscalar correlator. The third one is
proposed in the study of Schwinger model [12]. They extracted the topological susceptibility from
the asymptotical value of the singlet pseudoscalar correlator up to1/V correction as

lim
x→∞

〈mP(x)mP(0)〉Q,V =
1
V

(
Q2

V
−χt

)
+O(V−2). (3.1)

Although the intuitive picture for this relation was given in Ref. [12], the field theoretical proof
based was given only recently, which will be explained in the next subsection.

3.1 Field theoretical proof of the formula for the topological susceptibility

Suppose that there is a well-defined local operatorω(x) that measures the local topological
charge. The global topological chargeQ is then obtained asQ =

∫
d4xω(x), and the topological

susceptibility isχt =
∫

d4x〈ω(x)ω(0)〉, where the expectation value is taken for theθ = 0 vacuum.
Sinceω(x)ω(0) is CP-even, Eq. (2.12) gives

〈ω(x)ω(0)〉Q = 〈ω(x)ω(0)〉+ 〈ω(x)ω(0)〉(2) 1
2Vχt

(
1− Q2

Vχt
− c4

2χ2
t V

)

+〈ω(x)ω(0)〉(4) 1

8χ2
t V2

+O(V−3), (3.2)

where〈O〉(n) is then-th derivative of〈O〉 with respect toθ . In the large separation limit|x| → ∞,
the CP invariance atθ = 0 and the clustering property at a fixedθ gives

lim
|x|→large

〈ω(x)ω(0)〉Q =
1
V

(
Q2

V
−χt −

c4

2χtV

)
+O(V−3)+O(e−mη ′ |x|), (3.3)

where the flavor singlet pseudo-scalar meson mass,mη ′ , is the lightest mass of possible intermedi-
ate states.

Physical quantities such as the topological susceptibilityχt can be obtained through (3.3). In
practice, this formula will be used for a finite separationx instead of|x| → ∞. The clustering
property in theθ vacuum receives a correction of order ofe−mη ′ |x|, which vanishes quickly because
the flavor singlet mesonη ′ acquires a large mass due to the axial anomaly of QCD.

We now express the bosonic correlation function〈ω(x)ω(0)〉 in terms of a fermionic one using
the anomalous axial U(1) Ward-Takahashi (WT) identities for an arbitrary operatorO:

〈∂µAµ(x)O−2mP(x)O+2ω(x)O+δxO〉 = 0, (3.4)
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Figure 1: The finite size effects1+Tm (left panel) and1+Tf (right panel) from fixed topology atQ= 0 with
L = 2 fm. The pion masses correspond to those in the dynamical simulation by the JLQCD collaboration.

whereAµ(x) = 1
Nf

∑ f ψ̄ f (x)γµγ5ψ f (x) andP(x) = 1
Nf

∑ f ψ̄ f (x)γ5ψ f (x) are the flavor singlet axial-
vector current and pseudo-scalar density, respectively, andδxO denotes a axial rotation of the oper-
atorO atx. Combining WT identities forO = 2mP(0) andO = 2ω(x) Combining these we finally
obtain

lim
|x|→large

〈mP(x)mP(0)〉Q =
1
V

(
Q2

V
−χt −

c4

2χtV

)
+O(e−mη ′ |x|). (3.5)

In fact, using this formula one can determine the topological susceptibility from the nonzero asymp-
totic value of the singlet pseudoscalar correlator [6, 7].

4. Application to physics

One can estimate the finite size corrections for the pionic quantities with the help of Chiral
Perturbation Theory (ChPT). Using the next-to-leading order ChPT formula,θ dependence of the
the pion mass and the decay constant for two-flavor QCD is

m2
π(θ)|rmNLO = m2

π(θ)

[
1+

(
mπ(θ)
4π f

)2
(

ln

(
mπ(θ)

mphys
π

)2

− l̄phys
3

)]
, (4.1)

fπ(θ)|rmNLO = f

[
1−2

(
mπ(θ)
4π f

)2
(

ln

(
mπ(θ)

mphys
π

)2

− l̄phys
4

)]
, (4.2)

wherem2
π(θ) ≡ 2B0mqcos

(
θ
Nf

)
, andl̄3, l̄4 are the low energy constants which can be estimated as

l̄phys
3 = 2.9±2.4, andl̄phys

4 = 4.4±0.2 [17]. Fig. 1 shows the finite size effects1+Tm ≡ mQ=0
π /mπ

and1+Tf ≡ f Q=0
π / fπ at L = 2 fm using the NLO ChPT. The pion masses correspond to those in

the dynamical simulation by the JLQCD collaboration [18]. The topological susceptibilityχt is

5
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extracted from the singlet pseudoscalar correlator as explained in the previous section. It is found
that finite size effect for the pion mass ranges from 0.5 to 2.5 %, whereas that for the pion decay
constant is well below 0.5%. These finite size correction from fixing the topology is correctly
taken into account in the spectrum study [18]. In general, for quantities which has a non-vanishing
chiral limit, θ or Q dependence correction only comes throughmπ(θ) as sub-leading corrections.
Therefore, pion receives the largest finite size correction. This means that if the finite size effect of
the pion mass in under control, other hadronic quantities are safe.

4.1 Nongaussianity of the topological charge distribution

Recently deviation of the topological charge distribution from Gaussian is observed for pure
Yang-Mills gauge theory [13, 14, 15, 16]. In principle, we can also measure the deviation from
the Gaussian (c4 coefficient) by combining the 2-, 3-, 4-point functions of the topological charge
density given as follows

lim
|x|→large

〈ω(x)ω(0)〉Q = − χt

V2

[
1− 1

2χ2
t V

(c4−2χtQ
2)

]
+O(V−3) (4.3)

lim
|xi−x j |→large

〈ω(x1)ω(x2)ω(x3)〉Q = −3χt
Q
V2

[
1+

7

6χ2
t V

(c4−
2
7

χtQ
2)

]
+O(V−4) (4.4)

lim
|xi−x j |→large

〈ω(x1)ω(x2)ω(x3)ω(x4)〉Q = 3
χ2

t

V2

[
1+

1

χ2
t V

(c4−χtQ
2)

]2

+O(V−4). (4.5)

5. Summary

We have derived general formulas which express arbitrary correlation functions at a fixed
topological chargeQ in terms of the same correlation function (and its derivatives) in theθ vacuum.
The difference between the fixedQ vacuum and the fixedθ vacuum can be shown to disappear in
the large volume limit as1/V only using fundamental properties of the quantum field theory.

These formulas open a new possibility to calculate physical quantities in the lattice QCD
simulations at a fixed topological charge. This will become unavoidable as the continuum limit is
approached, irrespective of the lattice fermion formulation one employs, as far as the algorithm is
based on the continuous evolution of the gauge field.

Applying the formula forn-point functions of the topological charge densityω, we have shown
that the topological susceptibilityχt andc4 appear at the first and second order corrections, respec-
tively. In principle, these parameters can be determined by the lattice data. Our method is free from
short-distance singularities, since the local topological charge operators are put apart from others
and no contact term appears. Numerical calculation is in progress by the JLQCD collaboration
on the gauge configurations generated with dynamical overlap fermion [19, 20, 21, 22]. Once
these parameters are numerically obtained, they can be used as input parameters for other physical
observables, such as weak matrix elements such asBK [23], pion form factor [24], the neutron
electric dipole moment, and so on.
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