PROCEEDINGS

OF SCIENCE

Modified Coulomb potential of QED in a strong
magnetic field

Néda Sadooghi *

Department of Physics, Sharif University of Technolog®. Box 11155-9161, Tehran-Iran
Institute for Studies in Theoretical Physics and MatheosatiPM),

School of Physics, P.O. Box 19395-9161, Tehran-Iran

E-mail: sadooghi @hysi cs.sharif.ir

The static Coulomb potential of Quantum Electrodynamicsalulated in the presence of a
strong magnetic field by computing perturbatively the vamuexpectation value of the cor-
responding Wilson loop in the lowest Landau level (LLL) apgdmation. In the LLL, two
different regimes of dynamical masseyyn, can be distinguished. These two regimes are
laf| < My, < |eBl and Mg, < |qf| < |eB|, whereq is the longitudinal components of
the momentum relative to the external magnetic fiBld As it turns out, the potential in
the first regime,|qﬁ| < Mgy, < |eB|, has the general form of a modfied Coulomb potential

Vi(R6) = -¢ (;z{l(a,e) - V”ngg'vm + VZ%RT’G)), wherea is the fine structure constant and
0 the angle between the particle-antiparticle axis and thereal magnetic field. In the second
regime,mﬁyn < |qﬁ| < |eB|, however, the potential has the general form of a modifiedavisk

potentialV(R, 8) = —&’—_‘E% with M (a,8) = g(6) % The 6-dependence df; and

V5 is a novel property, which was not observed before in theditee. As it turns out, in the
regime|qﬁ| < mﬁyn < |eB, for strong enough magnetic field and depending on the afigte
qualitative change occurs in the Coulomb-like potenfialWhereas foilf = 0, it the potential is

repulsive, it exhibits a minimum for anglés<]0, .
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1. Introduction

It is widely accepted that the formation of quark bound stattethe QCD low energy regime,
arises by spontaneous breaking of chiral symmetry of QCDrdragjan. But, chiral symmetry
breaking can also be induced dynamically in the presencaadground electromagnetic fields. In
particular, strong and constant magnetic fields lead todhmdtion of chiral symmetry breaking
condensatéy ), that plays the role of a dynamically generated fermion raasisbreaks the chiral
symmetry of the theory consequently. This is the well-disthbd scenario of magnetic catalysis
[2]. The essence of this effect is the dimensional reducliom D to D — 2 dimensions in the
dynamics of fermion pairing in a strong magnetic field, tlsabelieved to be dominated by the
lowest Landau level (LLL).

Here, we are interested on static Coulomb potential pradiiyea point-like electric charge
placed into a strong but constant magnetic field. Recehilypiotential is calculated in [3] and [1].
In [3], it is shown that the standard Coulomb law is maodifiedtiy vacuum polarization arising
in the external magnetic field. This implies a short rangeattar of interaction, expressed as
Yukawa law

—M,R 2 N
V(X) = — aeR ’ , with the photon mass My =/ a’eTB‘f, (1.1)

R = |x| the distance between a particle-antiparticle pair ard % the fine structure constant. In
these proceedings, after briefly introducing QED in an etemagnetic field, we will present the
results from [1], where this potential is determined anevebmputing perturbatively the vacuum
expectation value (VEV) of the corresponding Wilson loomtstatic fermion-antifermion pair. In
the regime of LLL dominance, two different regions of dynaatimassngyn, qﬁ\ < mﬁyn < |eB|

andmg,, < Iqﬁl < |eB, will be considered separately. In the regimq% < Mgy, < |eB), the
potential will be shown to have the general form of a modifiedildmb potential
a yata(a,0)  y’ofs(a,B) . 20
Vi(R08) =——= | #(a,0) — th = 1.2
l( 5 ) R < 1(0{, ) R2 + R4 ) wi y 3mﬁyn> ( )

and in the regimeng,,, < \qﬁ\ < |eB, itis a Yukawa-like potential
a e MetR . B [2a|eB
V,(R,0) = _(l—%W?’ with the photon mass M. (8) = g(0) — (1.3)
In (1.2) and (1.3),2%,i = 1,2,3 andg(0), whose exact expressions will be presented in Section
4, are some functions depending 8nthe angle between the particle-antiparticle axis and the
direction of the magnetic field. Up to this explicit novel éepence orf, the potentiaV, (R, 0)

from (1.3) is comparable with the potential (1.1) from [3helconsequences of tifedependence
will be also discussed in Section 4.

2. QED in a strong magnetic field

We start with the QED Lagrangian density

1 g m
gZ_ZFWFWery“ (i0y+eA) y—mdy, (2.1)
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where the vector fieldh, = a, +AS*. Here, a, is the Abelian quantum field an,, is the
corresponding field strengthA‘E,"t describes an external electromagnetic field. It is posdible
fix the gauge so that the magnetic field is directed in the tdirdction. Here, we choose the
symmetric gaugeb\ext =3 B (0,x2,—x1,0). Using the Schwinger proper time formalism [4], the full
photon propagator in the LLL approximation is given by [2]

~ g

Do Q) = ——— = (22)
q +q\| (qwa)
with I'I(qi,q‘zl) having the form [5]
aleB Ny 2
n(a?.af) ~ 3nm5yn e for laf| < My, < |eB, (2.3)
2a|eBN¢ _ 4

I_I((ﬁaQﬁ) % 2e8 for rTﬁyn < ’qﬁ‘ < |eB. (2.4)

In the second regime, the photons acquire a finite mass. &hib& shown by plugging (2.4) in the
full photon propagator (2.2) and assuming thﬁq < |eB. The corresponding photon propagator
is then given by

[
~ i
Duv(Q) = ~ P gqu'ﬁ’ with the photon mass M, =/ &:'Nf (2.5)

The appearance of a finite photon mbsis the result of the dimensional reductior-3 — 1+1

in the presence of a constant magnetic field. As for the dycalinigenerated fermion massyn,

it can be determined nonperturbatively by solving the @pomding Schwinger-Dyson equation in
the rainbow (ladder) approximation [2]. It is given by

Mayn = C\/e_Bexp<—7—2T (%)1/2> , (2.6)

where the constari is of order one.
3. The Wilson loop and the modified Coulomb potential in a strmg magnetic field

In ordinary QED, the static Coulomb potentia(R) between a particle and an antiparticle is
given by the VEV of a closed Wilson loop (see [6] and the rafees therein)

V(R) =~ Jim ZinWe[A), (3.1)
where the loop correlation functionthe Wilson loopis defined by
ieg Ay(x)d
We[A] = e 8 P (3.2)

The VEV in (3.1) is given by

[ PP DYDY 6 S
T I DYI P e S

(0) = (3.3)
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For Sbeing the QED action, the Coulomb potenWdR) = —%R can be analytically calculated in

the quenched approximation. To do this, we expahigA]) in powers of the background fiel,

weia) = (1+te f anauo S f f oxanauconm+) (34)
Plugging (3.4) in (3.1), the potential reads
&
V(R) = T"Lnooﬁféfédx“dy" DHY(x,y) + O(€°). (3.5)

Replacing nowD*Y(x,y) by the photon propagator of the ordinary QED in the coordirsgace
Duv(X,y) = 4n2((5x L the standard Coulomb potential can be derived. Note thé®,4), the second
term including only one gauge field does not contribute. Agte other terms, those with an odd
number of external photon lines does not contribute to tfevalexpansion. This is because of
the Furry’s theorem, that holds in ordinary QED in contrasyQED in the presence of external
magnetic field. In the next section, using the above idea #ntcfe-antiparticle potential in the
LLL approximation will be derived in two different regimey beplacingD*¥(x,y) in (3.5) with
the full photon propagator from (2.2)-(2.4).

4. Results

4.1 Modified Coulomb potential in |qf| < m§,,, < |eB| regime

Substituting (2.3) witiNs = 1 in (2.2) the full photon propagator in the coordinate space
this regime is given by

7 e (4.1)
v (X |guv/ — )
T @t g quxp< ;TE)

After a lengthy but straightforward calculation, we arratgsee [1] for more details)

5/ 4a. Sit0  3a,R2sir? 0
Duv(R,6,T) = —v Kl Y 2+VR22 + 22 )
4m?ay al 2pBas 2p%a;
ﬁ 1_3R23|n29+3R45in49
2Ba; 8p2az

a

Wyap (2 (o 4a,R?sir? 9> B 15a2R45in46>
Bt (2 B <2R Si 04+ — >+4B2 5 (R“sm 0+ 8ypa

_ (1_ 3 (stinze +%> N 6 <R43in49 N a2R2s,in29> B 15a2R43in49>}
leBBa2 Bay 2 y B2a2 16 y 8ypB3as

(4.2)

Here,3 1 z4<1+ 3%%3 > andy(a) = 3nm§ , are constant c-numbers, aath =a,2 (R, 6,T)
yn

are defined by (R, 6,T) = T2+ R22(a, 6) with f2(a,6) = 1+ Y8 sin? 6, anday(R,6,T) =
By(T2+R2cos°- 9). In all these expressiorR = |x| is the distance between the static fermion
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and antifermion pair@ is the angle between the particle-antiparticle axis andltrextion of the
magnetic fieldB, i.e. thexz direction, andT = ixg is the Euclidean time. The static Coulomb

potential can then be calculated using (3.5) and reads

CACH:) (0,0
V(R 0) =& (la,0) - L ). L, ). 4.9
with
H(0,0)= T,
1 3cog0 3sifl 15sirfHcos o
“2(0,6) =73 (1_ 2 8pf 8pf* )
9 5sif6 35sirf 0
5(a,6) =+ 755 (1_ 4B 72 +128B2f4>
15c0$6 7 _ 63sirf 6 3sif8\ 693coé0Osin’o
T (3—W(2[300526+3sm29)+w(Bc0526+ G )— 2563216 >
3 5 : 35sirf 6 sif8\ 315co$0sin*6
18R 5B (1—4Bf2(4[3c0526+3|n29)+7432f4 (Bc0529+ = )— 1286216

).

Figure 1 shows this potential for different choices of theymetic fieldB = 10°, 10,107, 10° (from
right to left) and differentd = 0, 11/3,2m1/3, 1. According to this result, foR — O the potential
falls more rapidly to—c the smaller the magnetic field is and the shape of the polematia almost

the same for different choices 6f

Potential V1(R,® in q><< mg®<< |eB|
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Figure 1: PotentiaV1 (R, 6) for differentB and8. No qualitative changes occurs by varying the ar@ijle

This situation changes by neglecting the coefficignts comparing withez; andy.e in Vi(R, 6).
In [1] we have studied the behavior of the coefficients y.o%> andy?.a% as a function of the angle
@ for different magnetic fields. As it turns out, the coeffidens;, y.o/» and y2.o3 are positive
V0 € [0, i and for any choice of constant magnetic fiBldut <73 falls down rapidly by increasing
the strength of the magnetic field and can be indeed negleEted > 10°, the potentiaVi (R, 6)

can be therefore replaced My(R, ) = —& (m(a,e) - %) which has its minimum at
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Rmin(B,8) = 3’%2. Figure 2 showd/3(R, 0) for different choices of the magnetic fiell =
10°,1CP, 10" and 1§ (from right to left) and differen®® = 0, 77/3, 71/2,2r/3, 7. As it turns out,
whereas for6 = 0, T the potential is repulsive, it exhibits a minimum for ang<]0, if and
distancesk < 0.005 fm. Moreover, the depth of the potentialRyi, increases with the magnetic
field. We interpret this effect as a possibility for boundsti@mrmation. The answer to the question
concerning the existence and the number of bound states jpotlentials is beyond the scope of

this work?.

Potential V3(R,60) in qf2<<m4®<< |eB| Regime for different 6 and B
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Figure 2: PotentiaV;(R, 6) for differentB and6. Bound states can be formed férc]0, ii| and for strong
magnetic field®8 > 10° in the regimeR < 0.005 fm. The depth of the potential Bf,in increases with the

magnetic field.

4.2 Modified Coulomb potential in mgyn < \qﬁ] < |eB| regime

To compute the inter-particle potential in this regime, va@ento determine first the photon prop-
agator in the coordinate space. To do this, we substitufg (2.(2.2). ForN; = 1, we arrive first

at

. ) d4q gax

Duv(X) = —|g“|“,/ 7 - (4.4)
(2 o2~ 2222 exp( s )

The integration oveq can be performed using the approximat'u@ < |eB which is valid in the

regime of LLL dominance (see [1] for more details). We ariave

Sy M

4
4772 (1— %) T2+ Re?(6) Ky <Mym> ) (4.5)

whereM, = 2aled andg(6) = ,/co2 0 + TT”ZQ?. Using now (3.5), the modified potential can be

n
determined and reads

épv(R, Q,T) =

_ O oMmgeR
V(R ) = (l—%)g(B)Re 9OR (4.6)

LA nonperturbative analysis of the corresponding Schréefiregjuation describing the Nambu-Goldstone modes
and arising from a Bethe-Salpeter equation for bound sttews that at least one bound state can be formed in the
attractive potential ird = 4 dimensions [2].
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This potential is indeed comparable with the attractiveaxu& potential/y aw(R) = — % MR with

R
a— % and the effective photon mass— M (6) = M,g(0).

Potential V2(R,0) in mg®<=< q,° << |eB| Regime for different
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Figure 3: PotentiaV»(R, 8) for differentB and8. No qualitative changes occurs by varying the ariijle

This result is in agreement with the general result aboutrtassive photons in a strong magnetic
field in the LLL approximation. It is well-known that in thegiene mﬁyn < ]qﬁ\ < |eB, the 3+1
dimensional QED in the LLL approximation is reduced to-a 1 dimensional Schwinger model,
where the photon acquires a finite m&dds Comparing to the above result, the effective photon
mass in this regime is given y.x = M,g(60) and depends explicitly on the andlebetween the
particle axis and the direction of the external magnetidfi€igure 3 shows the potentd(R, 6)

in the second regimmﬁyrl < |qﬁ| < |eB of LLL, for different magnetic fieldB and angle6.
Again no qualitative changes occurs by varying the aiglé would be interesting to determine
the inter-particle potential of QED in the LLL using a nonjpebative lattice calculation of the
corresponding Wilson loop.
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