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We present results of lattice computations using overlap fermions on a twisted mass background.

N f = 2 full QCD gauge configurations have been produced by the ETM Collaboration with very

light pions (down to less than 300 MeV), with small lattice spacing (a ≈ 0.09 fm) and large

volumes (V/a4 = 243×48). By profiting of the good chiral properties of the overlapoperator for

the valence quarks, it is also possible to have a precise (andunquenched) determination of those

physical quantities where the chiral properties are crucial. In order to have unquenched results,

we match the valence quark mass with the sea quark mass. We also perform computations with

different quark masses in order to simulate (partially quenched) Strange and Charm quarks. A

typical application is the computation ofBK , for which we present first results.
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1. Introduction

Dynamical overlap simulations are extremely expensive. One interesting possibility is to use a
different regularization for valence and for sea quarks. Infact, valence quarks are much less critical
from the costs point of view (since they only appear in the final measurements, as in the quenched
case), but much more critical from the point of view of the symmetries. In particular we can use the
“twisted mass” (tm) regularization for the sea quarks, and the “overlap” (ov) regularization for the
valence quarks. This so calledMixed Actions approach [1] is very promising, since it can strongly
reduce (or even completely eliminate) the operator mixing problem and has the potentiality of
delivering the most precise and cost effective results in the near future.

Violations of unitarity by lattice artifacts, which are expected, can be studied analytically
within ChPT. They may also take the form of (O(a2) suppressed) double poles, just like in Par-
tially Quenched QCD, but a closer inspection suggests that these might be small in practice [2].
Moreover, since the exact (twisted mass) sea quark matrix isavailable, they can also be studied
numerically. This is important in order to keep lattice artifacts under control. A first test is re-
ported in [3]. Numerical simulations using a similar “mixed” approach has been reported by other
collaborations also in this conference [4, 5, 6, 7, 8, 9].

In this proceedings we present our first physical results obtained with this approach. The
present analysis, which is done with limited statistics, ismainly meant to check the set-up that we
are using in order to decide on possible improvements.

The outline of this work is as follows. In the next section we describe the detailed set-up of our
computation. In section 3. we give physical results on the pion sector. In section 4. we discuss the
computation of renormalization factors, which is done using the RI-MOM method and the Ward
Identities. In section 5. we comment on our preliminary computation ofBK.

2. Details of the computation

The gauge background that we use in the present work consistsin the Twisted-Mass gauge
configurations which have been produced by the ETM Collaboration [10, 11]. We summarize here
the main features. We use twisted mass fermionic action at full twist with N f = 2 degenerate quarks,
tree level Symanzik improved gauge action atβ = 3.9 which corresponds to a lattice spacing
a ≈ 0.09 fm. The volume isV/a4 = 243 × 48. In the present study we consider a single value
of the sea quark massaµ = 0.004 (the lightest available), which corresponds to a pseudo-scalar
massmπ ≈ 300 MeV. As mentioned in the introduction, these first results are obtained with a low
statistics of 54 independent gauge configurations. For morecomments about the choice of this
background for sea quarks we refer to [10, 11].

Valence quarks are described by the overlap operator [12]:

D(m) = (ρ − am
2

)D + m,

D =
1
a
(1+

A√
A†A

), A = aDW −ρ , (2.1)

whereDW is the Wilson Dirac operator andρ is a parameter that we set equal to one, in order to
optimize the locality properties ofD [3]. Before applying the overlap operator we perform a single
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HYP-smearing transformation [13]. The computation of the propagators is done with point-like
sources chosen randomly on the whole lattice. The inversions are performed by computing exactly
the lowest 40 eigenvalues and then using the SUMR algorithm [14, 15] with adaptive precision
[16]. Thanks to a multiple mass procedure [17], which can be extended to the SUMR solver [16],
we produced propagators for a wide range of bare masses down to am = 0.006 and covering the
Strange and Charm range. This brought a negligible loss of precision at high masses. The cost of
the computation of one full propagator is equivalent to the cost of producing a few independent
gauge configurations. In order to understand whether the continuum limit is convenient in this
approach, it will be important to check how the above cost ratio will scales whena → 0, at fixed
physical volume.

In a previous report [3] we discussed a wide range of tests performed on smaller lattices and
we will not repeat them here. We only mention that the comparison of the scalar correlator shown
in [3] was not repeated in the larger lattice, since the low-mode averaging [18]– that is necessary
to have a clean scalar propagator – is rather expensive and weprefer to look at more physical
quantities first.

3. Results in the pion sector

The first quantity that we consider is the pion mass, since this is also what we use to match
the valence quark mass with the sea quark mass. This is shown in Fig. 1. The horizontal line
(with tiny error-bars) marks the pion mass obtained in the “unitary” (tm-valence, tm-sea) set-up.
From this comparison, the matching point is estimated to be (in the overlap bare quark mass) at
am = 0.0075(10). The matching of one quantity implies of course that other quantities are only
matched up to lattice artifacts. The hope of this approach isthat these are not too large in physical
quantities.

The pion decay constantfπ can be computed in a number of ways. The most interesting one
is the one which does not rely on any renormalization factor:

fπ =
2m
m2

π
|〈0|P|π〉|.

This can be compared directly with the tm-valence tm-sea result [10], which is alsoO(a) improved.
In this approachfπ turns out to be about 10-15 % larger than in [10], at the matching point, but
also the error-bars are of the same order of magnitude, and therefore still compatible. It is clear,
from this analysis, that some kind of noise reduction techniques as those employed in [10] would
be important.

It is also possible to compare our results for the pion massesand the pion decay constants
with Chiral Perturbation Theory. The necessary Partially Quenched formulae have been computed
in [19] and the corresponding finite volume corrections in [20]. This comparison is shown in
Fig. 2. The dashed lines show the fit at finite volume, while thesolid ones show the corresponding
extrapolations at infinite volume. This gives a value off0 which is larger than [10], as is clear from
the considerations above.
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Figure 1: Matching the valence-valence and the sea-sea pion masses.
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Figure 2: Fit of the data against Chiral Perturbation Theory at finite volume (dashed lines). The solid lines
are the extrapolations of the curves at infinite volume. The pion mass is plotted in a way to make the presence
of non linear corrections more evident.

4. Renormalization constants

The renormalization factors have been computed with the RI-MOM method [21]. This is
possible since the gauge configurations had been (Landau) gauge fixed before the computation of
the propagators.

It is important to note that the tree level overlap operator is different from the Wilson oper-
ator and forρ = 1 the difference is significant at high momenta (which are above the cutoff, but
still important in the RI-MOM procedure). To take this into account we define the quark field
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Figure 3: On the left: Plateaux for the RI-MOM determination of the renormalization factorsZA andZV .
On the right: PCAC Ward Identity.

renormalization constantZψ as:

Zψ(µ ,g) = −i
1
48

Tr[ γν pν S−1(p)]

ω(p)∑µ sin2apµ |p2=µ2

ω(p) =
[

sin2(ap)+ (sin2(
ap
2

)−ρ)2
]− 1

2

The other definitions are unchanged with respect to [21]. We computed the renormalization factors
for all bilinear fermionic operator and for some choices of four fermions operators. In general we
find that the chiral extrapolation is very stable, although the plateaux are not always completely
clear. As an example, we show in Fig. 3 (left) the plateaux forthe renormalization factors of
the Vector and Axial currents. In these cases we obtain, in the chiral limit, ZV = 0.98(5) and
ZA = 1.05(5), where the errors are only statistical. These can be compared with the renormalization
factors obtained from the PCAC Word Identities. The relation between bare and PCAC quark
masses is displayed on the right hand side of Fig. 3. From thisWard Identity one can derive
ZA = 1.19(3), where the errors are only statistical.

The RI-MOM method can also be used to determine the renormalization factors of the four
fermions operators. In particular, in the next section, we are going to use the renormalization factor
of the operatorO∆S=2 = [s̄γν(1− γ5)d][s̄γν(1− γ5)d]. TheRI renormalization factor can then be
converted into the renormalization group invariant one using the anomalous dimension computed
in [22]. This gives usZRGI

BK
= 1.48(3). The momentum dependence ofZRI

BK
(µ) and ZRGI

BK
in the

chiral limit are shown in Fig. 4.

5. To-wards the computation of BK . Comments and conclusions

An obvious quantity which is particularly interesting in this approach isBK , the Kaon bag
parameter, which is related to the mixing ofK̄0 andK0 by the expression:

〈K̄0|O∆S=2(µ)|K0〉 =
16
3

M2
KF2

KBK(µ)

In fact a precise non perturbative determination ofBK would have a strong impact on the deter-
mination of the associatedCKM matrix elements. Moreover, it is only with an exactly chirally
symmetric regularization that the operatorO∆S=2 cannot mix with other operators (without need of

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
8
3

Overlap valence on a Twisted Mass sea L. Scorzato

0 0.5 1 1.5 2 2.5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(ap)2

 

 

ZRI(µ)

ZRGI

0 0.02 0.04 0.06 0.08 0.1 0.12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

       mπ
2

B
K

Figure 4: Left: The momentum dependence ofZRI
BK

(µ) (bottom) andZRGI
BK

(top) at the chiral limit. Right:
The bare factorBK as a function of the pseudo-scalar mass. The Kaon mass corresponds here toam2

π ≃ 0.05.

relying on any tuning procedure). Finally, we have now the possibility to remove the quenching
errors.

We computedBK in a standard way employing the propagators described above. More pre-
cisely we use the same procedure described in [23], althoughwe use lighter quark masses. In par-
ticular it was important to use the left hand current. Our results are shown in Fig. 4 and imply for
the bare B-parameterBlat

K = 0.66(7) and for the renormalization group invariant oneB̂K = 0.98(11)
(errors are only statistical). Although the error-bars become very large at light masses, they are still
reasonable at the Kaon mass, which is relevant forBK. Nevertheless, some kind of noise reduction
technique would be probably helpful and we are currently exploring those used in [10].

Comparison with ChPT has been performed using the formulae in [19, 20], and the inclusion
of appropriate lattice artifacts can be done following the procedure in [24].

Acknowledgments

We wish to thank the members of the ETM Collaboration who havecontributed to the results
presented here and in particular O. Bär, K. Jansen, S. Schaefer, A. Shindler. L.S. acknowledges
INFN for support and NIC/DESY for hospitality. Numerical work has been done in the SGI altix
at HLRB (München), in the IBM p690 at ZIB (Berlin) and in the BEN cluster at ECT* (Trento).
We are grateful to A. Vladikas and V. Lubicz for useful discussions about the RI-MOM method.

References

[1] O. Bar, G. Rupak and N. Shoresh, Phys. Rev. D67 (2003) 114505 [arXiv:hep-lat/0210050].

[2] M. Golterman, T. Izubuchi and Y. Shamir, Phys. Rev. D71 (2005) 114508 [arXiv:hep-lat/0504013].

[3] O. Bar, K. Jansen, S. Schaefer, L. Scorzato and A. Shindler, PoSLAT2006 (2006) 199
[arXiv:hep-lat/0609039].

[4] K. C. Bowler, B. Joo, R. D. Kenway, C. M. Maynard and R. J. Tweedie [UKQCD Collaboration],
JHEP0508 (2005) 003 [arXiv:hep-lat/0411005].

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
8
3

Overlap valence on a Twisted Mass sea L. Scorzato

[5] K. Orginos and A. Walker-Loud, arXiv:0705.0572 [hep-lat].

[6] S. R. Beane, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, A. Torok and A. Walker-Loud,
arXiv:0706.3026 [hep-lat].

[7] C. Aubin, PoS(LATTICE 2007)088.

[8] S. Krieg, PoS(LATTICE 2007)113.

[9] L. Lellouch, PoS(LATTICE 2007)115.

[10] Ph. Boucaudet al. [ETM Collaboration], Phys. Lett. B650 (2007) 304 [arXiv:hep-lat/0701012].

[11] C. Urbach, PoS(LATTICE 2007)022.

[12] H. Neuberger, Phys. Lett. B417 (1998) 141 [arXiv:hep-lat/9707022].

[13] A. Hasenfratz and F. Knechtli, Phys. Rev. D64 (2001) 034504 [arXiv:hep-lat/0103029].

[14] C. F. Jagels and L. Reichel, Numer. Linear Algebra Appl., 1(6) (1994) 555.

[15] G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, T. Lippert and K. Schafer,
arXiv:hep-lat/0311025.

[16] T. Chiarappaet al., arXiv:hep-lat/0609023.

[17] B. Jegerlehner, arXiv:hep-lat/9612014.

[18] T. A. DeGrand and S. Schaefer, Comput. Phys. Commun.159 (2004) 185 [arXiv:hep-lat/0401011].

[19] M. F. L. Golterman and K. C. L. Leung, Phys. Rev. D57 (1998) 5703 [arXiv:hep-lat/9711033].

[20] D. Becirevic and G. Villadoro, Phys. Rev. D69 (2004) 054010 [arXiv:hep-lat/0311028].

[21] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa andA. Vladikas, Nucl. Phys. B445 (1995) 81
[arXiv:hep-lat/9411010].

[22] M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini, Nucl. Phys. B523
(1998) 501 [arXiv:hep-ph/9711402].

[23] N. Garron, L. Giusti, C. Hoelbling, L. Lellouch and C. Rebbi, Phys. Rev. Lett.92 (2004) 042001
[arXiv:hep-ph/0306295].

[24] J. W. Chen, D. O’Connell and A. Walker-Loud, arXiv:0706.0035 [hep-lat].

7


