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1. Introduction

The | = 2 mrrT scattering provides a testing ground for the method of calculating the hadron
interactions on the lattice, since it is the easiest process to compute among other more involved
interactions, such ds= 0 or 1 it scatteringsyiN, NN interactionsetc The method to extract
the scattering length (or, in general, scattering phase shift) on the Euclidean lattice has been known
already since middle eighti€$,|2] and some attempts were made to calculatd tAe 717t scatter-
ing length with or without the quenched approximation (see, for early atter@p4}),[but realistic
calculation with light dynamical quarks has been made possible only recBhtly [

The main interest with the dynamical fermions is the consistency with the chiral perturbation
theory (ChPT). Since the pion interactions occur mainly through derivative couplings in ChPT
and their structure is completely constrained by chiral symmetry, the scattering length is entirely
determined by the pion mass and decay constant at the leading order (small quark mass limit). At
the next-to-leading order there exists a non-analytic term, so-called the chiral logarithm, with a
definite numerical coefficient. Therefore, its calculation may give a stringent test for the lattice
method as far as the chiral limit is sufficiently approached.

In practice, there is a complication due to the violated chiral symmetry (and/or flavor symme-
try) when one uses conventional lattice fermion formulations, such as the Wilson-type fermions (or
staggered fermions). For these fermions the beautiful relations derived from ChPT are not guaran-
teed to be satisfied unless the continuum limit is carefully taken first. Therefore, for the stringent
test, the use of chiral lattice fermions is mandatory. In the recent work by the NPLQCD collabo-
ration 5] the domain-wall fermion is used on the gauge configurations generated with staggered
sea quarks. Although there is a plausible argument that the ChPT relations are not badly distorted
with this choice, more rigorous approach using chiral fermions for both sea and valence quarks is
desirable. This work is the first such attempt.

We calculate thé = 2 rrrr scattering length using the overlap fermion for both sea and valence
quarks. The calculation is done o @ x 32lattice ata~ 0.12 fm: the two-flavor gauge ensemble
generated by the JLQCD collaboratid) [, 8]. The sea quark mass covers the regie6—ms
(ms is the physical strange quark mass), with which the chiral extrapolation should be reliable. In
the following we report some preliminary results and a first attempt to test the consistency with
ChPT.

2. Calculation setup and methods

We employ the overlap fermio®]/10], whose Dirac operator with a quark manss defined
by

D(m) = (mo+ 3 ) + (mo— 2) yesgrihw (—mo)], 1)

with the standard hermitian Wilson-Dirac operaté,(—mp) with a large negative massmy
(mpa = 1.6 throughout this work). For the gauge sector the lwasaki gauge action is |$eda80
together with extra (irrelevant) Wilson fermions to suppress the near-zero madgs-efg) [11].

With this choice, the global topological charge is conserved during the HMC simulations. Its effect
on the physical quantities can be understood as a finite volume effeé¢ig¥ ) [12], and the effect

in this particular calculation will be briefly discussed below.
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Figure 1: Contributions to the two-pion correlator in the periodic box ghirection. Extra terms due to the
wrap-aroundeffect is shown byV(T).

The sea and valence quark masses are set equal in this calculation at 0.015, 0.025, 0.035,
0.050, 0.070, and 0.100 in the lattice unit, which correspond to the physical napigems. For
each sea quark mass, we pickedLO0 gauge configurations every 100 HMC trajectories in the
JLQCD runs. The auto-correlation time for these runs 00.

For the extraction of the scattering lengihwe utilize Lischer’s formuled, 2]

2

En+n+ —2mn+ = —:1”71303 {l—FClT_O—FCzaLOZ
whereEy: .+ is the energy of two-pion system in a box of lengtlndm,;: is the pion mass. The
numerical constants; andc, are—2.837297and6.375183respectively.

For the interpolating operator of two pions, we simply use the wall source at a timé sli@e
Thel = 2 two-pion state is constructed by combining the direct (D) and crossed (C) topology of
quark lines according tod4]. The sink operator is two local pseudo-scalar density projected onto
zero spatial momentum.

The JLQCD group calculated and stored the lowest 50 pairs of eigenvalues and eigenvectors of
the overlap-Dirac operator for their dynamical configurations. We utilize them to precondition the
overlap solver, which makes the calculation faster by an order of magnitude. In addition, we use
them to improve the statistics through the low mode averadifiy [In this technique, the quark
propagator is decomposed to the low-lying mode contribution (“L") and high mode one (“H").
Then, for example, the meson correlator is written as

C(t) = Crn(t) +Ch(t) +Cun (t) +Cr (t). (2.3)

Among these four contributions, an average over source points is taken for the “LL'Qie(s,

which is actually the dominant contribution for small quark masses. This averaging greatly im-
proves the statistical signal as demonstrate®jn YWe use the same technique for the two-pion
state.

}+0(L—6), (2.2)

3. Calculation of the energy shift

Because of the periodic boundary condition in the temporal direction, the two-pion correlator
does not simply behave asp(—E ;;t) but contains somerap-aroundeffects. For the single pion
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Figure 2: Effective mass plot for the two-pion state (blue squares)at 0.050. Twice the pion effective
mass is also shown for comparison (red triangles).

case, it is simply written as
Cr (t) O exp[—mpt] + exp[—mg(T —t)] (3.1)
with T the temporal length of the lattice. For the two-pion correlator we obtain
Cre e+ (1) O exp[—Ennt] + exp[—Emn(T — )] +W(T), (3.2)
whereW(T) is thewrap-aroundeffect and is approximately expressed as
W(T) O exp[—mgt] - exp[—my(T —t)] = exp(—myT). (3.3)

(See Figldl) Namely, the two-pion correlator contains a small but significant constant term, that
has to be taken into account especially when pion mass is small.
We fit the two-pion correlator to a form

Cri (t) = Acosh—Eq (t —T/2)] +B (3.4)

with two free parameter& andB. In order to identify the region where the excited state contami-
nation can be neglected, we consider a ratio

_ G (t41) —Croe (1)
Crim(t) =Cripr (t— 1)

in which the parametera andB cancel out when the ground state dominates a8.4).(We plot

a variant of the effective mass for this rafgs(t) = InRy 7+ (t) in Fig.2 for ma= 0.050. Since

we are using the wall source, the plateau is reached rather slowly, but we can still observe a nice
plateau in the regiota €[10,15], which is chosen as the fit range. As the plot shows the energy
difference betweek;;; and2m;; is clearly extracted.

Ryt e (1) (3.5)
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Figure 3: Energy shift due to therrr interaction.

4. Finite size effect

On our lattice the spatial extehtis about 1.9 fm, which is not sufficiently large to neglect
finite size effects (FSE). A complete analysis of FSE for pion mass and decay constant using the
next-to-next-to-leading order (NNLO) ChPT4, 15] has been done by the JLQCD collaboration
[8], which we use in this work. Similarly, the modification of Lischer’s formula is calculated at
next-to-leading order (NLO) ChPT id 6], that is also taken into account in the following analysis.

In general, this type of FSE behavesa8, so that the effect is more significant for smaller quark
masses. At the smallest quark mass in our calculation, the numerical size of FSE is approximately
2%, 6%, 10% for the pion mass, decay constant, and scattering length, respectively.

In addition to these standard FSE, there is an artifact due to fixing the global topological
charge in our calculation. This type of FSE is@f1/V) in general, and can be estimated once the
topological susceptibility and th@ dependence of the physical quantity of interest are knd#h [

The topological susceptibility has been calculated on the JLQCD configurations red&ptijHe

6 dependence is known through ChPT. At the leading order of ChPT, only the pion mass has the
6 dependence. At this stage of the analysis, we therefore include this effect for the pion mass as
done in B] but neglect it for the scattering length. An NLO calculation is to be done to include the
fixed topology artifact.

5. Result

Fig.3 shows the interaction energy between two pions for each quark mass. The FSE correc-
tions are included as described in the previous section. We clearly observe that the energy shift
AE = E;;; — 2my increases rapidly as quark mass approaches the chiral limit as expected from
ChPT.
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Figure 4: | = 2 rirr scattering length divided by, as a function ofré. The yellow points are data before

the FSE corrections, while the blue points are after the FSE corrections. The data point in the massless limit
denotesl/(8mF?) with the decay constarft in the chiral limit calculated separately. The red point is the
phenomenological value. Dashed and solid curves are the NLO ChPT fits with or without the constraint
F=Fo.

By converting these values to the scattering lengths using Lischer’s forthgjave obtain
the result for the scattering lengd as shown in Fig4. The impact of FSE can be seen from the
difference between yellow (without FSE) and blue (with FSE) symbols.

In the following, we attempt a fit of the data with the NLO ChPT formula

g’ _ 1 m (7, m
m;  87mF2 [“ 8122 <2'09uz +|m(u))] (5.1)

whereF andFy are the decay constants in the chiral limit (in the 132 MeV normalizatién).
andFy must be the same in this formula, but here we introduce separate parameters for the overall
constant ) and for the strength of the chiral logarithm terf), (For a discussion, see below.)
l=(1) is a linear combination of the scale-dependent low energy constants in the chiral lagrangian
ato(p*).

In the massless limitgy/my; is solely given byF. In addition to the data of this calculation,
we plot the data for-1/(8mF2) with F obtained from the standard analysis of the pion decay
constant/8]. Then, all the data points are fitted including the massless limit (green line). From
this fit leavingF andFy as independent free parameters, we obkin 103(5) MeV andr =
199(35) MeV, which indicate that the data are not consistent \&itl) {f all the data points are
included. Instead, if we put a constraiRt= Fp, then we obtain the red curve, which clearly
indicate that the chiral logarithm term iB.Q) is too strong.

From this analysis, it is likely that the one-loop ChPT formula can be applied only in the very
small quark mass region and the two-loop effect is significant already at anounohs/2. Also,
the remaining finite size effect could be important, since the effect at NLO is already significant.
Analysis is on-going to understand these points.
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