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1. Introduction

The I = 2 ππ scattering provides a testing ground for the method of calculating the hadron
interactions on the lattice, since it is the easiest process to compute among other more involved
interactions, such asI = 0 or 1 ππ scatterings,πN, NN interactionsetc. The method to extract
the scattering length (or, in general, scattering phase shift) on the Euclidean lattice has been known
already since middle eighties [1, 2] and some attempts were made to calculate theI = 2 ππ scatter-
ing length with or without the quenched approximation (see, for early attempts, [3, 4]), but realistic
calculation with light dynamical quarks has been made possible only recently [5].

The main interest with the dynamical fermions is the consistency with the chiral perturbation
theory (ChPT). Since the pion interactions occur mainly through derivative couplings in ChPT
and their structure is completely constrained by chiral symmetry, the scattering length is entirely
determined by the pion mass and decay constant at the leading order (small quark mass limit). At
the next-to-leading order there exists a non-analytic term, so-called the chiral logarithm, with a
definite numerical coefficient. Therefore, its calculation may give a stringent test for the lattice
method as far as the chiral limit is sufficiently approached.

In practice, there is a complication due to the violated chiral symmetry (and/or flavor symme-
try) when one uses conventional lattice fermion formulations, such as the Wilson-type fermions (or
staggered fermions). For these fermions the beautiful relations derived from ChPT are not guaran-
teed to be satisfied unless the continuum limit is carefully taken first. Therefore, for the stringent
test, the use of chiral lattice fermions is mandatory. In the recent work by the NPLQCD collabo-
ration [5] the domain-wall fermion is used on the gauge configurations generated with staggered
sea quarks. Although there is a plausible argument that the ChPT relations are not badly distorted
with this choice, more rigorous approach using chiral fermions for both sea and valence quarks is
desirable. This work is the first such attempt.

We calculate theI = 2 ππ scattering length using the overlap fermion for both sea and valence
quarks. The calculation is done on a163×32lattice ata' 0.12 fm: the two-flavor gauge ensemble
generated by the JLQCD collaboration [6, 7, 8]. The sea quark mass covers the regionms/6–ms

(ms is the physical strange quark mass), with which the chiral extrapolation should be reliable. In
the following we report some preliminary results and a first attempt to test the consistency with
ChPT.

2. Calculation setup and methods

We employ the overlap fermion [9, 10], whose Dirac operator with a quark massm is defined
by

D(m) =
(

m0 +
m
2

)
+

(
m0− m

2

)
γ5sgn[HW(−m0)], (2.1)

with the standard hermitian Wilson-Dirac operatorHW(−m0) with a large negative mass−m0

(m0a= 1.6 throughout this work). For the gauge sector the Iwasaki gauge action is used atβ = 2.30
together with extra (irrelevant) Wilson fermions to suppress the near-zero modes ofHW(−m0) [11].
With this choice, the global topological charge is conserved during the HMC simulations. Its effect
on the physical quantities can be understood as a finite volume effect ofO(1/V) [12], and the effect
in this particular calculation will be briefly discussed below.
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Figure 1: Contributions to the two-pion correlator in the periodic box int direction. Extra terms due to the
wrap-aroundeffect is shown byW(T).

The sea and valence quark masses are set equal in this calculation at 0.015, 0.025, 0.035,
0.050, 0.070, and 0.100 in the lattice unit, which correspond to the physical rangems/6–ms. For
each sea quark mass, we picked∼ 100 gauge configurations every 100 HMC trajectories in the
JLQCD runs. The auto-correlation time for these runs is. 100.

For the extraction of the scattering lengtha0 we utilize Lüscher’s formula [1, 2]

Eπ+π+ −2mπ+ =− 4πa0

mπL3

{
1+c1

a0

L
+c2

a0
2

L2

}
+O(L−6), (2.2)

whereEπ+π+ is the energy of two-pion system in a box of lengthL andmπ+ is the pion mass. The
numerical constantsc1 andc2 are−2.837297and6.375183respectively.

For the interpolating operator of two pions, we simply use the wall source at a time slicet = 0.
The I = 2 two-pion state is constructed by combining the direct (D) and crossed (C) topology of
quark lines according to [4]. The sink operator is two local pseudo-scalar density projected onto
zero spatial momentum.

The JLQCD group calculated and stored the lowest 50 pairs of eigenvalues and eigenvectors of
the overlap-Dirac operator for their dynamical configurations. We utilize them to precondition the
overlap solver, which makes the calculation faster by an order of magnitude. In addition, we use
them to improve the statistics through the low mode averaging [13]. In this technique, the quark
propagator is decomposed to the low-lying mode contribution (“L”) and high mode one (“H”).
Then, for example, the meson correlator is written as

C(t) = CHH(t)+CHL(t)+CLH(t)+CLL (t). (2.3)

Among these four contributions, an average over source points is taken for the “LL” pieceCLL (t),
which is actually the dominant contribution for small quark masses. This averaging greatly im-
proves the statistical signal as demonstrated in [8]. We use the same technique for the two-pion
state.

3. Calculation of the energy shift

Because of the periodic boundary condition in the temporal direction, the two-pion correlator
does not simply behave asexp(−Eππt) but contains somewrap-aroundeffects. For the single pion

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
8
6

I = 2 ππ scattering length with dynamical overlap fermion Takuya Yagi

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

151050

E
e
ff
 a

t a

Eππ(t) a

2mπ(t) a
Fit line for the two pions
Fit line for the single pion

Figure 2: Effective mass plot for the two-pion state (blue squares) atma= 0.050. Twice the pion effective
mass is also shown for comparison (red triangles).

case, it is simply written as

Cπ+(t) ∝ exp[−mπt]+exp[−mπ(T− t)] (3.1)

with T the temporal length of the lattice. For the two-pion correlator we obtain

Cπ+π+(t) ∝ exp[−Eππt]+exp[−Eππ(T− t)]+W(T), (3.2)

whereW(T) is thewrap-aroundeffect and is approximately expressed as

W(T) ∝ exp[−mπt] ·exp[−mπ(T− t)] = exp(−mπT). (3.3)

(See Fig.1.) Namely, the two-pion correlator contains a small but significant constant term, that
has to be taken into account especially when pion mass is small.

We fit the two-pion correlator to a form

Cπ+π+(t) = Acosh[−Eππ (t−T/2)]+B (3.4)

with two free parametersA andB. In order to identify the region where the excited state contami-
nation can be neglected, we consider a ratio

Rπ+π+(t) =
Cπ+π+(t +1)−Cπ+π+(t)
Cπ+π+(t)−Cπ+π+(t−1)

, (3.5)

in which the parametersA andB cancel out when the ground state dominates as in (3.4). We plot
a variant of the effective mass for this ratioEeff(t) ≡ lnRπ+π+(t) in Fig. 2 for ma= 0.050. Since
we are using the wall source, the plateau is reached rather slowly, but we can still observe a nice
plateau in the regionta∈[10,15], which is chosen as the fit range. As the plot shows the energy
difference betweenEππ and2mπ is clearly extracted.
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Figure 3: Energy shift due to theππ interaction.

4. Finite size effect

On our lattice the spatial extentL is about 1.9 fm, which is not sufficiently large to neglect
finite size effects (FSE). A complete analysis of FSE for pion mass and decay constant using the
next-to-next-to-leading order (NNLO) ChPT [14, 15] has been done by the JLQCD collaboration
[8], which we use in this work. Similarly, the modification of Lüscher’s formula is calculated at
next-to-leading order (NLO) ChPT in [16], that is also taken into account in the following analysis.
In general, this type of FSE behaves ase−mπ L, so that the effect is more significant for smaller quark
masses. At the smallest quark mass in our calculation, the numerical size of FSE is approximately
2%, 6%, 10% for the pion mass, decay constant, and scattering length, respectively.

In addition to these standard FSE, there is an artifact due to fixing the global topological
charge in our calculation. This type of FSE is ofO(1/V) in general, and can be estimated once the
topological susceptibility and theθ dependence of the physical quantity of interest are known [12].
The topological susceptibility has been calculated on the JLQCD configurations recently [17]. The
θ dependence is known through ChPT. At the leading order of ChPT, only the pion mass has the
θ dependence. At this stage of the analysis, we therefore include this effect for the pion mass as
done in [8] but neglect it for the scattering length. An NLO calculation is to be done to include the
fixed topology artifact.

5. Result

Fig. 3 shows the interaction energy between two pions for each quark mass. The FSE correc-
tions are included as described in the previous section. We clearly observe that the energy shift
∆E ≡ Eππ − 2mπ increases rapidly as quark mass approaches the chiral limit as expected from
ChPT.
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Figure 4: I = 2 ππ scattering length divided bymπ as a function ofm2
π . The yellow points are data before

the FSE corrections, while the blue points are after the FSE corrections. The data point in the massless limit
denotes1/(8πF2) with the decay constantF in the chiral limit calculated separately. The red point is the
phenomenological value. Dashed and solid curves are the NLO ChPT fits with or without the constraint
F = F0.

By converting these values to the scattering lengths using Lüscher’s formula (2.2) we obtain
the result for the scattering lengtha0 as shown in Fig.4. The impact of FSE can be seen from the
difference between yellow (without FSE) and blue (with FSE) symbols.

In the following, we attempt a fit of the data with the NLO ChPT formula

aI=2
0

mπ
=− 1

8πF2

[
1+

m2
π

8π2F2
0

(
7
2

log
m2

π
µ2 + lππ(µ)

)]
(5.1)

whereF andF0 are the decay constants in the chiral limit (in the 132 MeV normalization).F
andF0 must be the same in this formula, but here we introduce separate parameters for the overall
constant (F) and for the strength of the chiral logarithm term (F0). (For a discussion, see below.)
lππ(µ) is a linear combination of the scale-dependent low energy constants in the chiral lagrangian
atO(p4).

In the massless limit,a0/mπ is solely given byF . In addition to the data of this calculation,
we plot the data for−1/(8πF2) with F obtained from the standard analysis of the pion decay
constant [8]. Then, all the data points are fitted including the massless limit (green line). From
this fit leavingF andF0 as independent free parameters, we obtainF = 103(5) MeV andF0 =
199(35) MeV, which indicate that the data are not consistent with (5.1) if all the data points are
included. Instead, if we put a constraintF = F0, then we obtain the red curve, which clearly
indicate that the chiral logarithm term in (5.1) is too strong.

From this analysis, it is likely that the one-loop ChPT formula can be applied only in the very
small quark mass region and the two-loop effect is significant already at aroundm∼ms/2. Also,
the remaining finite size effect could be important, since the effect at NLO is already significant.
Analysis is on-going to understand these points.
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