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We discuss the current status of our calculation of the physics of π andK mesons using three

dynamical flavors of improved staggered quarks. This year, we have a new ensemble with a lattice

spacing of 0.06 fm and a light sea mass of 0.2ms, as well as significant increases in statistics at

several coarser lattice spacings and/or heavier sea masses. Results for decay constants, quark

masses, low energy constants, condensates, andVus are presented.
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MILC light pseudoscalar project C. Bernard

a (fm) am̂′ / am′
s L (fm) mπ / mρ mπL 10/g2 Lat Dim # Lats

≈0.15 0.0290 / 0.0484 2.4 0.522 6.7 6.600 163×48 600
≈0.15 0.0194 / 0.0484 2.4 0.454 5.5 6.586 163×48 600
≈0.15 0.0097 / 0.0484 2.4 0.348 3.9 6.572 163×48 600
≈0.15 0.00484 / 0.0484 3.0 0.256 3.4 6.566 203×48 600

≈0.12 0.03 / 0.05 2.4 0.582 7.6 6.81 203×64 362
≈0.12 0.02 / 0.05 2.4 0.509 6.2 6.79 203×64 485
≈0.12 0.01 / 0.05 2.4 0.394 4.5 6.76 203×64 894
≈0.12 0.01 / 0.05 3.4 0.395 6.3 6.76 283×64 275
≈0.12 0.007 / 0.05 2.4 0.342 3.8 6.76 203×64 836
≈0.12 0.005 / 0.05 2.9 0.299 3.8 6.76 243×64 527
≈0.12 0.03 / 0.03 2.4 0.590 7.6 6.81 203×64 360
≈0.12 0.01 / 0.03 2.4 0.398 4.5 6.76 203×64 349

≈0.09 0.0124 / 0.031 2.4 0.495 5.8 7.11 283×96 531
≈0.09 0.0062 / 0.031 2.4 0.380 4.1 7.09 283×96 583
≈0.09 0.0031 / 0.031 3.4 0.297 4.2 7.08 403×96 503

≈0.06 0.0072 / 0.0018 2.9 0.474 6.3 7.48 483×144 556
≈0.06 0.0036 / 0.0018 2.9 0.370 4.5 7.47 483×144 334

Table 1: Lattice parameters. The lattice spacings are the “nominal”scales (see text). Theπ andρ referred
to are those formed out of the sea quarks for each lattice; valence quark masses however go down to the
lightest sea-quark values in the table.

We are using improved staggered quarks [1] withNf = 3 dynamical flavors (both unquenched
(“full”) QCD and partially quenched) to study the physics oflight pseudoscalars (π, K). Since
our original published work [2], we have continued to add data sets with lighter sea quark masses
and/or finer lattice spacings and to improve the analysis. This is the latest in a series of periodic
updates [3, 4]. We concentrate here on those aspects that have changed since last year.

Table 1 gives the parameters of our lattices. The quantitiesm′
s andm̂′ =m′

u =m′
d denote the

values of sea quark masses chosen in each run. (The corresponding masses without the primes,
e.g., ms andm̂≡ (mu+md)/2, are the physical values.)

Thea≈0.06 fm lattice with masses 0.0036 / 0.018 is a new ensemble thisyear, as is (for this
analysis) the large-volumea≈0.12 fm lattice with masses 0.01 / 0.05 and spatial size 283. The
numbers of configurations for thea≈0.06 fm lattice with masses 0.0072 / 0.018 and for several of
thea≈0.12 fm lattices have almost doubled since last year. Running on ana≈0.06 fm lattice with
m̂′ = 0.1m′

s (masses 0.0018 / 0.018) has recently begun but is not included here.

On each ensemble, we determiner1/a, wherer1(m̂′,m′
s,g

2) [5] is a length scale from the static
quark potential, similar tor0 [6]. The quantityrphys

1 , defined as the continuumr1 at physical quark
masses ( ˆm, ms) may be determined from ther1/a values and theϒ 2S-1S splitting [7]. We obtain
rphys
1 = 0.318(7) fm [4, 8].

For generic chiral and continuum extrapolations, it is convenient to define the lattice scale by
a ≡ rphys

1 /(r1(m̂′,m′
s,g

2)/a). We call this the “nominal” scale-setting procedure. In choosing the
input lattice couplingg2, we keptr1/a fixed asm̂′ andm′

s changed over a given set of ensembles
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MILC light pseudoscalar project C. Bernard

(e.g., thea≈0.12 fm ensembles). Thus, up to tuning errors, each ensemble grouped within a box
in Table 1 has the same nominal scale. However, fixing the scale this way is not completely correct
for applying chiral perturbation theory (χPT) to quantities such asfπ sincer1 has some (small, but
physical) dependence on the dynamical quark masses that is not included inχPT.

A mass-independent procedure to set the scale is preferable[9]. A convenient procedure is to
replacer1(m̂′,m′

s,g
2)/a by r1(m̂,ms,g2)/a, where the value ofr1(m̂,ms,g2)/a at physical masses

m̂,ms is obtained by a smooth interpolation/extrapolation fromr1(m̂′,m′
s,g

2)/a. We tried this mass-
independent scheme in Ref. [2], but the differences with thenominal approach were smaller than
other systematic errors for all quantities. With better data, we now find significant differences in a
few low energy constants (LECs). In addition, the mass-independent scheme tends to have better
confidence levels in ourχPT fits. Therefore we use this scheme exclusively here.

As in Refs. [2, 3, 4] we fit the partially quenched (PQ) latticedata to rooted staggered chiral
perturbation theory (rSχPT) forms [10, 11, 12]. We always fit multiple lattice spacings, and both
masses and decay constants, simultaneously. To determine the LO and NLO LECs and chiral-
limit quantities, we fit to the low quark-mass region, and omit thea≈0.15 fm lattices, where taste
violations are large. Denoting the valence quark masses in the mesons bymx and my, the low-
mass cuts are:amx +amy<∼0.39ams (at a≈0.12 fm); amx +amy<∼0.51ams (at a≈0.09 fm); and
amx + amy<∼0.56 ams (at a≈0.06 fm). We can tolerate a higher cutoff at smaller lattice spacing
because the taste violations, and hence the masses of non-Goldstone pions, are smaller. In these fits,
we also cut on sea-quark mass and remove thea≈0.12 fm sets with masses 0.03/0.05, 0.02/0.05,
and 0.03/0.03. Because the statistical errors are so small, we still need to add in the NNLO analytic
terms to the complete NLO forms in order to get good fits [2].

For interpolation aroundms, we must include higher quark masses. Once LO and NLO pa-
rameters are determined, we fix them (up to statistical errors) and fit to all sea mass sets, all lattice
spacings, and valence massesmx + my<∼1.2 ms. We now also need to add in NNNLO analytic
terms to get good fits. These NNNLO fits are used for central values of fπ , fK and quark masses.

Figure 1 shows results for the squared pseudoscalar masses as a function of quark mass. “Pi-
ons” have valence massesmy = mx; while “kaons” havemy held fixed at various (arbitrary) values
while mx varies. The fit is to the full quark-mass range and uses NNNLO terms.

For the pions, the relative values of the results on various lattices is determined largely by the
relation between the simulation strange massm′

s in the sea and the physical massms. For example,
m′

s/ms is largest for thea≈0.12 fm lattices, which makes the slope of the pion data greatest for
these lattices. For kaons, the biggest effect is simply the choice of the values of the fixed valence
massmy, typically chosen to be various fixed fractions ofm′

s.

Extrapolating to the continuum and setting valence and sea quark masses equal, we get the
dashed red lines;m′

s has been adjusted so that both the kaon and the pion hit their physical values
at the same value ofmx. This gives the physical quark masses ˆmandms (after renormalization).

Note that the fit lines in Fig. 1 are remarkably straight on this scale. To see curvature coming
from the NLO chiral logs as well as the analytic higher order terms, we plotm2

π/(mx+my) in Fig. 2
(left). As the lattice spacing decreases, the PQ log at smallmass becomes more evident. At larger
lattice spacing, the PQ log is largely washed out by staggered taste violations. The continuum
dashed red line has sea and valence masses equal, so no PQ log is expected.
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Figure 1: Comparison of NNNLO fit to partially-quenched squared mesonmasses. For clarity only the
lightest sea-quark ensemble for each lattice spacing is shown.

Figure 2: Data form2
π/(mx +my) is plotted at left; while that forfπ is plotted at right. This is the same fit

as in Fig. 1. All sea-quark ensembles are represented, but only “pion” points (mx=my) are shown.

In Fig. 2 (right), we show the behavior of the decay constant.Extrapolating to the continuum,
settingm′

s = ms, and setting light valence and sea masses equal gives the dashed red line. The final
result for fπ after extrapolatingmx,my→m̂ is marked by a+. The experimental result is indicated
by the◦; it comes from theπ+ → µ+ + νµ decay width andVud = 0.97377(27) [13].

All points and fit lines above have been corrected for finite volume effects using the rSχPT
forms at one loop. However, it is known [14] that finite volumeeffects coming from higher orders
in χPT can be a large (∼50%) correction to the one-loop effects in the current ranges of quark
mass and volume. We therefore study this issue directly by comparing results on the spatial size
203 and 283 a≈0.12 fm ensembles witham̂′ = 0.01,am′

s = 0.05. These lattices have spatial length
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quantity % difference boosted % diff. 1-loop % diff.

a fπ 1.4(2)% 1.6(2)% 1.1%

a fK 0.4(3) % 0.4(3) % 0.3%

(amπ)2 -1.0(4)% -1.2(4)% -0.9%

(amK)2 -0.4(2) % -0.4(2) % -0.2%

Table 2: Finite volume effects. The second column is the % differencebetween the values on the 283 and the
203 lattice. In the third column, we “boost” the difference, to take into account the (small) further difference
between 283 and infinite volume. (We use one-loop results to make the adjustment.) The last column shows
the % difference between 203 and infinite volume as predicted by one-loop rSχPT. “Pion” quantities are
from lattice valence masses 0.005, 0.005; “kaon” quantities are from lattice valence masses 0.005, 0.04.

2.4 fm and 3.4 fm, respectively. The comparison is shown in Table 2.
As expected from Ref. [14], the true finite volume effects arelarger than those predicted at

one-loop, although only forfπ are the relative errors small enough to make the comparison unam-
biguous. We define the “residual finite volume effect” on the 203 lattice as that effect not taken into
account at one-loop,i.e., the difference between columns three and four in Table 2. Inpractice, the
203, am̂′ = 0.01,am′

s = 0.05,a≈0.12 fm lattice is close to the worst case in our data set, since the
volumes both at the lightest sea quark masses and at the finestlattice spacings are larger.

Judging by the one-loop results, we expect the overall (and hence residual) finite volume ef-
fects closest to the chiral and continuum limits in our data set to be about half those seen in the
table. We therefore correct our data by 1/2 the residual finite volume effects from Table 2, and take
the full size of the correction as a systematic error. We notethat the size of the error determined
here is very similar to that estimated by us previously [2] using Ref. [14].

The fact that we can get good fits to the forms predicted by rSχPT (and not to those of con-
tinuum χPT [2]) is an overall test of staggered chiral perturbation theory, including the “replica
trick” to represent rooting. As a more focused test of the replica trick in rSχPT, we allownr , the
number of replicas per staggered flavor, to be a free fit parameter. If rSχPT is correct, we should
find nr = 1/4. On the low-mass data set described above, we obtainnr = 0.28(2)(3), where the
errors are statistical and systematic (describing the variation over details of the chiral fits). While
the ability of rSχPT to describe rooted staggered data cannot prove the correctness of the rooting
trick itself, it does indicate that no problems occur in the chiral sector of the rooted theory [12].
This is because rSχPT reproduces continuumχPT in the limita→ 0.

Usingr1 = 0.318(7) fm from ϒ splittings, we obtain (still preliminary)

fπ = 128.3±0.5 +2.4
−3.5 MeV

fK = 154.3±0.4 +2.1
−3.4 MeV

fK/ fπ = 1.202(3)(+ 8
−14) ,

where the errors are from statistics and lattice systematics. These results are consistent with our
previous results [2], with 20–30% smaller errrors. Our value for fπ is consistent with the experi-
mental result,f expt

π = 130.7±0.1±0.36 MeV [13].
Instead of setting the scale fromϒ splittings, we can set the scale fromfπ itself, which gives

smaller errors forπ–K quantities. Note that even dimensionless quantities can change with the new
scale, due to changes in physical quark masses. We then obtain (preliminary):
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fK = 156.5±0.4 +1.0
−2.7 MeV fK/ fπ = 1.197(3)(+ 6

−13)

fπ/ f2 = 1.052(2)(+6
−3) 〈ūu〉2 = −(278(1)(+2

−3)(5) MeV)3

fπ/ f3 = 1.21(5)(+13
− 3) 〈ūu〉3 = −(242(9)(+ 5

−17)(4) MeV)3

f2/ f3 = 1.15(5)(+13
− 3) 〈ūu〉2/〈ūu〉3 = 1.52(17)(+38

−15)

2L6−L4 = 0.4(1)(+2
−3) 2L8−L5 = −0.1(1)(1)

L4 = 0.4(3)(+3
−1) L5 = 2.2(2)(+2

−1)

L6 = 0.4(2)(+2
−1) L8 = 1.0(1)(1)

ms = 88(0)(3)(4)(0) MeV m̂= 3.2(0)(1)(2)(0) MeV

mu = 1.9(0)(1)(1)(1) MeV md = 4.6(0)(2)(2)(1) MeV

ms/m̂= 27.2(1)(3)(0)(0) mu/md = 0.42(0)(1)(0)(4) .

The errors are statistical, lattice-systematic, perturbative (for masses and condensates; from two-
loop perturbation theory [15]) and electromagnetic (for masses; from continuum estimates).f2 ( f3)
represents the three-flavor decay constant in the two (three) flavor chiral limit, and〈ūu〉2 (〈ūu〉3) is
the corresponding condensate. The low energy constantsLi are in units of 10−3 and are evaluated
at chiral scalemη ; the condensates and masses are in theMS scheme at scale 2GeV.

We also obtain
r1 = 0.3108(15)(+26

−79) fm ,

which is 1-σ lower (and with somewhat smaller errors) than the value fromthe ϒ system. There
is a 2-σ conflict between ourr1 result from fπ and the HPQCD Collaboration [7] value fromϒ
splittings,r1 = 0.321(5) fm. If instead we compare to our own evaluation ofr1 from theϒ spectrum,
r1 = 0.318(7) [4], the difference is only 1-σ . We emphasize, however, that the evaluations of
r1 from the ϒ splittings both by us and by the HPQCD Collaboration use the same lattice data:
HPQCDϒ splittings [7] and MILC values ofr1/a [8]. The difference is only in how we extrapolate
to the physical point and estimate the systematic error. Ourresult is consistent, though, with the
(Nf = 2) result from the ETM Collaboration [16],r0 = 0.454(7) fm. Converting fromr0 to r1 using
the ratior0/r1 = 1.46(1)(2) (from Ref. [8], adjusted for the slight difference betweenNf = 3 and
Nf = 2), this givesr1 = 0.311(7) fm.

Together with the experimental result for the kaon leptonicbranching fraction [17], our result
for fK/ fπ implies |Vus| = 0.2246(+25

−13), which is consistent with (and competitive with) the world-
average value|Vus|= 0.2257(21) [13] coming from semileptonicK-decay coupled with non-lattice
theory.

The change in the perturbative mass renormalization constant Zm from one to two loops ac-
counts for almost all of the difference between the mass values quoted here and those in Ref. [18, 2].
A non-perturbative evaluation ofZm is in progress.

We stress that our extraction of theLi uses fits that include (analytic) NNLO terms. Therefore,
a comparison to other evaluations, either phenomenological or on the lattice, that stop at NLO
terms is problematic. Indeed, NNLO terms of “natural size” in χPT can produce changes in theLi

(relative to a pure NLO evaluation) that are as large as, or even somewhat larger than, our current
systematic errors. This is confirmed by NLO fits to our data. Such fits have very poor confidence
levels, however, which is why we do not include them in the analysis.
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The SU(2)L ×SU(2)R LECs l̄3, l̄4 that are extracted [19] from ourSU(3)L ×SU(3)R results
using one-loop (NLO) formulae are therefore quite sensitive to the NNLO terms, particularly for
l̄3. An NLO fit, on the other hand, gives̄l3 = 2.85(7) (statistical errors only), which is comparable
to the results from groups [16, 20] performing two-flavor simulations with NLOSU(2)L ×SU(2)R

fits. Indeed, this must be true, because them2
π data are so linear (see Fig. 1), which requiresl̄3 to

have roughly this value [19]. Alternative fits usingSU(2)L ×SU(2)R rSχPT are in progress. Since
the strange sea-quark is omitted from the chiral theory, theapproach should make possible good
NLO fits on light-mass data, and thereby bypass this issue. Inclusion of two-loop (continuum)
chiral logs [21] inSU(3)L ×SU(3)R fits is also in progress.

This work is supported in part by the US DoE and NSF. Computations were performed at the
NSF Teragrid, NERSC, and USQCD centers, and at computer centers at the University of Arizona,
the University of California at Santa Barbara, Indiana University, and the University of Utah.
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