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1. Dynamical overlap fermion

The JLQCD collaboration is carrying out a large scale lattice QCD simulation using the over-
lap fermion formulation for sea quarks. (An overview of the project has been given at this con-
ference by Matsufuru [1].) The first phase of the project was atwo-flavor QCD simulation on a
163×32 lattice at a lattice spacinga≃ 0.11–0.12 fm. The HMC simulations have been completed
accumulating about 10,000 molecular dynamics trajectories for six values of sea quark mass rang-
ing ms/6–ms. Preliminary reports of this project were already presented at Lattice 2006 [2, 3, 4, 5];
at this conference we have presented physics results for pion masses and decay constants [6], pion
form factor [7], kaonB parameter [8], and topological susceptibility [9]. We havealso performed
simulations in theε-regime by reducing the sea quark mass down to 3 MeV. This lattice has been
used for the analysis of low-lying eigenvalues of the overlap-Dirac operator [10, 11, 12] and for a
calculation of meson correlators in theε-regime [13]. The second phase of the project is to include
strange quark as dynamical degrees of freedom: a 2+1-flavor QCD simulation with the overlap
fermion. We aim at producing dynamical lattices of size 163×48 at around the same lattice spac-
ing a≃ 0.11–0.12 fm.

We use the Neuberger’s overlap-Dirac operator [14, 15]

D(m) =
(

m0+
m
2

)

+
(

m0−
m
2

)

γ5sgn[HW(−m0)] . (1.1)

The choice for the kernel operator is the standard Wilson fermion with a large negative massm0 =

1.6. For the gauge sector we use the Iwasaki gauge action together with extra Wilson fermions and
ghosts producing a factor

det
[

HW(−m0)
2
]

det[HW(−m0)2 + µ2]
(1.2)

in the partition function such that the near-zero modes ofHW(−m0) is naturally suppressed [16].
This term is essential for the feasibility of dynamical overlap fermion simulation, since it substan-
tially reduces the cost of the approximation of the sign function in (1.1). Although it prevents us
from changing the topological charge during the molecular dynamics evolutions, its systematic ef-
fect can be understood as a finite size effect and can be estimated (and even corrected) once the
topological susceptibility is known [17]. The topologicalsusceptibility is in fact calculable on the
lattice with a fixed topology as demonstrated in [9].

2. Algorithms

For the calculation of the sign function in (1.1) we use the rational approximation

sgn[HW] = HW

(

p0 +
N

∑
l=1

pl

H2
W +ql

)

(2.1)

with the Zolotarev’s optimal coefficientspl andql . This is applied after projecting out a few low-
lying modes ofHW. Typically, accuracy of order 10−(7−8) is achieved withN = 10. The multiple
inversions for(H2

W +ql )
−1 can be done at once using the multi-shift conjugate gradient(CG).
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The inversion ofD(m) is the most time-consuming part in the HMC simulation. In thetwo-
flavor runs, we mainly used the nested CG with relaxed residual for the inner CG [18]. In the
2+1-flavor runs, we use the five-dimensional solver as explained in the following.

By the Schur decomposition the overlap solver can be writtenin the form (for N = 2 for
example) [19, 20, 21]















HW −√
q2 0

−√
q2 −HW

√
p2

HW −√
q1 0

−√
q1 −HW

√
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0
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









, (2.2)

whereR = (1+ m)/(1−m). By solving this equation we obtain a solution forD(m)φ4 = χ4

with D(m) approximated by the rational function. The matrix in (2.2) can be viewed as a five-
dimensional (5D) matrix. An advantage of solving (2.2) is that one can use the even-odd pre-
conditioning. Namely, rather than solving the 5D matrixM, we may solve a reduced matrix
(1−M−1

ee MeoM−1
oo Moe)ψe = χ ′

e, where even/odd blocks ofM are denoted byMeo, Mee, etc. The
inversionM−1

ee (or M−1
oo ) can be easily calculated by the forward (or backward) substitution involv-

ing the 5D direction.
The low-mode projection can be implemented together with the 5D solver. The lower-right

corner is replaced by

R(1−PH)γ5(1−PH)+ p0HW +
(

m0+
m
2

) Nev

∑
j=1

sgn(λ j)v j ⊗v†
j , (2.3)

where PH is a projector onto the subspace orthogonal to theNev low-lying modes: PH = 1−
∑Nev

j=1sgn(λ j)v j ⊗ v†
j . Then, the inversion ofMee(oo) becomes non-trivial, but can be calculated

cheaply because the rank of the matrix is only 2(Nev+1); the subspace is spanned byxe, γ5xe, v je,
γ5v je ( j = 1, ..,Nev).

We compare the performance of the 5D solver with the relaxed CG in 4D. The elapsed time
to solve the 5D equation is plotted in Figure 1 as a function ofquark massm. The lattice size is
163×48 and the measurement is done on a half-rack (512 nodes) of the BlueGene/L supercomputer
(2.7 TFlops peak performance). Data forN = 10 is connected by lines for both 4D and 5D solvers.
Evidently, the 5D solver is faster by about a factor of 3–4. Increasing the number of degree of the
rational approximation requires more computational cost for both 4D and 5D. For the 5D case, the
cost is naively expected to be proportional toN, but the actual measurement shows slower increase,
which indicates some overhead due to the construction of low-mode projectoretc.

3. Odd number of flavors

Introduction of the pseudo-fermions for dynamical quark flavors is the starting point of HMC.
For the two-flavor case, this is straightforward by writing detD2 as

∫

[dφ ][dφ†]exp[−|H−1φ |2],
whereH ≡ γ5D. The same trick applied for one flavor introducesD−1/2 in the pseudo-fermion
action, which requires a method to calculate the inverse square-root of the Dirac operator. (For such

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
0
1

2+1 flavors of overlap light quarks S. Hashimoto

0 0.02 0.04 0.06 0.08 0.1 0.12
m

q
(quark mass)

0

200

400

600

800

1000

co
nv

er
ge

nc
e 

tim
e 

[s
ec

]

5D (Npoly=10)
4D (Npoly=10)
5D (Npoly=20)
4D (Npoly=20)

Figure 1: Comparison of solver performance. Data forN = 10 is connected by lines: 4D (red squares) and
5D (black circles).

algorithms, see [22], for example.) For the overlap-Dirac operator this problem can be avoided
as follows [23, 24]. Thanks to the exact chiral symmetry of the overlap fermion,H2 ≡ (γ5D)2

commutes withγ5, and therefore can be decomposed into positive and negativechirality subspaces:

H2 = P+H2P+ +P−H2P− ≡ Q+ +Q−, (3.1)

whereP± = (1± γ5)/2. Then, its determinant is factorized, detH2 = detQ+ · detQ−. SinceQ+

andQ− share the eigenvalues except for those of zero-modes, detH2 = (detQ+)2 = (detQ−)2 up
to the zero-mode contribution, which is a trivial factor forthe topology fixed simulations. In order
to simulate one flavor, one can just pick one chiral sector ofH2.

Thus, we introduce a pseudo-fermion field for the one-flavor piece asSPF1 = ∑x φ†
σ (x)Q−1

σ φσ (x),
whereσ can either be+ or− representing the chiral sector. At the beginning of each HMCtrajec-
tory, we refreshφσ (x) from a gaussian distributionξ (x) asφσ (x) = Q−1/2

σ ξ (x). This step requires
a calculation of the square-root ofQσ , which is done using the rational approximation. Calculation
of the molecular-dynamics force is straightforward: one can simply project onto the chiral sector
σ in the calculation of the force fromH2.

4. Runs

The 2+1-flavor runs are done atβ = 2.30, which is the same value as our main two-flavor runs.
The unit trajectory lengthτ is set to 1.0, twice longer than the two-flavor runs. Our choice of the
sea quark mass parameters are summarized in Table 1. The up and down quark massmud ranges
from ms down to∼ ms/6 as in our two-flavor runs. For the strange quark mass we take two values
aiming at interpolating to the physical strange quark mass.

At the time of the lattice conference, the runs proceeded to 500–1,000 HMC trajectories de-
pending on the mass parameter. One trajectory takes about 1–2 hours on one rack (1,024 nodes) of
BlueGene/L (5.7 TFlops peak performance). The acceptance rate is kept around 80–90% for each
run.
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mud ms = 0.080 ms = 0.100

0.015
√ √

0.025
√ √

0.035
√ √

0.050
√ √

0.080
√

0.100
√

Table 1: Sea quark mass parameters
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Figure 2: Molecular dynamics time evolution of the number of CG iterations in the calculation of the HMC
Hamiltonian. Data atmud = 0.025 (left) and 0.050 (right) withms = 0.100. In the plot “ov1” denotes up
and down quarks, while “ov2” corresponds to strange. “PF2” stands for the inversion with the original sea
quark mass, and “PF1” is for the preconditioner, whose mass is chosen to be 0.4 formq ≥ 0.035 or 0.2 for
mq ≤ 0.025.

Figure 2 shows the number of the (two) 5D CG iteration in the calculation of the HMC Hamil-
tonian. As expected the calculation for the two-flavor pieceis dominating the calculation.

Measurements of physical quantities are done at every 5 trajectories, so far only for thems =

0.100 lattices. In order to use in the low-mode preconditioning and low-mode averaging, we are
calculating 80 pairs of low-lying eigenmodes of the overlap-Dirac operator. The lattice spacing as
determined through the Sommer scaler0 (= 0.49 fm) is plotted in Figure 3 for both 2- and 2+1-
flavor lattices. At the sameβ value (= 2.30) the lattice spacing decreases as more dynamical flavors
are included.

Preliminary results for pion and kaon mass squared and decayconstant are shown in Figure 4.
Data atms = 0.100 are plotted as a function of sea quark mass. Although the statistics is still low
(< 1,000 trajectories for each sea quark mass), reasonably precise data are obtained using the low
mode averaging technique. Detailed analysis with the chiral extrapolation is yet to be done after
accumulating more statistics.

Numerical simulations are performed on Hitachi SR11000 andIBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 07-16). This work is supported in part by the Grant-in-Aid of the Min-
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Figure 3: Lattice spacing as a function of sea quark mass. Atβ = 2.30, two-flavor data (black circles) are
plotted together with a line of chiral extrapolation. 2+1-flavor data are plotted for bothms = 0.100 (blue
squares) and 0.080 (blue triangles). A quenched result at the sameβ value is shown by a red band.
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Figure 4: Preliminary results for pion and kaon mass squared (left) and their decay constants (right) as a
function of sea quark mass.

istry of Education, Culture, Sports, Science and Technology (No. 17740171, 18034011, 18340075,
18740167, 18840045, 19540286 and 19740160).
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