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1. Dirac operators: Dy, Doy, and D¢

In this work we compare the properties of the eigenvalue spectra of thtiee Birac oper-
ators, namely the Wilson operatbxy,, the overlap operatddoy and the Chirally Improved (Cl)
operator, denoted &3c,. The well knownDyy, (for vanishing mass parametay is given by

4. 1
DW'(m’”):al_ﬁ Z (1= yu)Upu(n) dnipim s (1.1)
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using the notatiory_,, = —y,,. The operator violates chiral symmetry, and thus does not satisfy the
Ginsparg-Wilson equation. The second fermionic action studied here iedefirougtDoy [fl]:
1 .
5 (A= ssignisA)) (1.2)
with A= 1s—aDy and 0< s< 2. For our calculations, we chose- 1.8.

This operator is an exact solution of the Ginsparg-Wilson equation

Dov =

¥vsD+Dy=DyD, (2.3)

and therefore implements chiral symmetry on the lattice. As a consequendgtbitispectrum of
Dov lies exactly on a circle, the so-called Ginsparg-Wilson circle.

The third Dirac operator we use@c;, represents an approximate solution [to](1.3). It is
defined [B] as a truncated expansion of a most general solution of trep@arWilson equation
into 'paths’ on the lattice of varying length. Taking paths up to infinite lengthlte$n an exact
solution. Using this technique we can combine lower computer cost with —éppate, but good
— chiral properties[]3].

2. Dynamical Chirally Improved fermions

For the following analysis of the spectral properties of the Dirac operateruse gauge fields
with 2 dynamical flavors of fermions with degenerate masses. These wes&ructed with an
HMC-algorithm, implemented with the Lischer-Weisz gauge action and the gineawtioned ClI
fermionic action. More details can be found fh [5].

Due to the 'almost chiral’ properties of this action, our HMC produces gaugpfigurations
which frequently tunnel between different topological sectors within daekov chain. Tabl¢]1
gives a short summary of the parameters of the gauge fields used inatysian

3. Comparison of the spectral properties

Inspection of the spectrum of a Dirac operator is a very good method teoseevell chiral
symmetry is approximated. In Fid] 1, for example, it can be clearly seen thatltispectrum
(right) deviates less from the ideal Ginsparg-Wilson circle than thBxaf(left).

Another information the spectrum provides is the topological ch@ggof a gauge configu-
ration. According to the Atiyah-Singer index theorem it is possible to deter@igyeby counting
the zero modes of a Ginsparg-Wilson type Dirac operator according tocthieatity,

Quop=n-—ny (3.1)
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run| L3xT B1 | am a[fm| amyy | #confs.
a | 128x24 |52 002 0.1156) | 0.025 73
b | 122x24 |52 |0.03]| 0.1256) | 0.037 52
c | 128x24| 53| 004 0.1204) | 0.037 55
d | 12x24|53|005]|0.1291) | 0.050 40

Table 1: The parameters for the runs used for this wdrkx T denotes the extent of the lattice in units of
the lattice spacing, amthe bare mass parameterf,, amay | the quark mass calculated via the axial Ward
identities, and3; the first gauge coupling of the set of three LW-couplings U§dThe configurations are
separated by 10 HMS-trajectories.
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Figure 1: Left: Part of the spectrum ddy, for configuration nr. 100 of run a. Right: The 50 smallest
eigenvalues oD¢, for the same gauge-configuration.

with n. denoting the number of eigenmode$ with chirality (v|ys|v) = £1 corresponding to
eigenvaluest = 0. When treatind¢,, due to its approximate nature, these eigenvalues are not
exactly zero, but scatter on the real axis. For the CI operator (and ilseV\bperator) one may
relate the number of real modes to the topological sector. We dete@uipey settingn.. as
the number of eigenmodéw®/) corresponding to real eigenvalues with chirality|ys|w) = 0,
respectively. (For eigenvalues not on the real axis we numericallyfimgs |w) = 0 as expected.)
When comparing the topological charge of a configuration calculated witbxdetly chiralDoy
and the approximately chir@c,, and we find approximate agreement (cf. fig. 2). The differences
mostly originate from missed eigenvalues far inside the Ginsparg-Wilson ,citleh are not
recovered in our method of calculating eigenvalues, namely the progrekagm ARPACK; this
tool only computes the eigenvalues with the smallest absolute value with respetfined origin.
When computing eigenmodes of the overlap operator, the situation is dtfféfaare the sector
depends on the value sfadded to the diagonal part of the kernel operator (Wilson in our case),
which has frequent inner real modes that are missed in that overlagtwojedepending os.

If one does not take into account any normalization and directly compmy@svalues oD
with those oDy as defined in[(1]2), an interesting behavior can be seen. In cases mdiemly
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Figure2: Qiopov VS. Quopc for the gauge configurations of run a. The numbers state hawy e@nfigura-
tions show a particular combination of topological charges

the topological chargop, is identical for both operators but also the number of real eigenvalues
no, the first few eigenvalues are in direct correspondence (cf.[Figfty, However, ifng > Qiop

for the CI operator, i.e., if eigenmodes with opposite chirality cancel eadr @tith respect to
Qtop: this correspondence is lost (cf. Fifd. 3, right). When put into the opesfeerator, the real
modes seem to “move” up resp. down the imaginary axis (although not akwf tfose to the real
axis), thereby increasing the eigenvalue density near the origin. For arsirbdarvation cf. [[4].
This enhancement leads to a higher value for the (bare) chiral ccateéamben calculated directly
with this definition ofDgy.

.o ov : o Aov e

0.05 e © s 0.05F ¢ .
: e <
° o s

Im(\) O Go 4 Im(\) O-§-----<>-----<>---<>---<>--—

o O ’
: °
f LIRS

-0.05r* ¢ . -0.05 — .
[ ] [ ]
LIS * o

-0.1 I.<><> | | | -0.1 I. <§> | | L
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

Re(\) Re(A)

Figure 3: Eigenvalues\oy of Doy and eigenvalueic, of D¢, in the complex plane. Left: configuration nr.
110 (run (a)):Qop = —2, Ny = 2 for both operators Right: configuration nr. 100 (run (&sp = —2, but
Nicr= 3, N_cI= 1.
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Figure 4: The average valuipr (A ) over the complex plane for the gauge configurations of run (a)

4. Localization of eigenmodes

For the Cl operator, we also calculated the inverse participation ragigsof the eigenmodes
for small eigenvalues, given by

2
ipr(A)=V Z <az7cv(x,a,c) v(x,a,c)) : 4.1)
The inner sum is over the color indicesas well as the Dirac indices, the outer sum over the
space-time indices V denotes the space-time volume in lattice units,\&mda , c) the eigenmode
of D¢ corresponding to the eigenvalde This quantity is a good measure for the localization
properties of one eigenmode, witr (A ) = 1 for a non-localized mode arngr (A ) =V for a mode
concentrated on only one lattice point. To compute a suitable average avdiM@-run, we
divided the complex plane into a grid and calculated the averagas

ipr= 1 ipr(A 4.2
P ”AEZAA pr(A), (4.2)
with A, being one square in the complex plane arttle number of eigenvalues i), .

In Fig. [4 we see, as expected, that increases along the real axis, and in general is higher
for eigenvalues inside the Ginsparg-Wilson circle (cf. a[$o [4]). Bey one expectspr to be
symmetric with respect to the real axis, but this is not the cas®¢grsince it is not a normal
matrix operator.

5. Comparison with random matrix theory

As the overlap operator implements chiral symmetry on the lattice exactly, the diigtnlof
the smallest eigenvalues (in leading order ChPT) is analytically given byd¢hdmown results of



The eigenvalue spectrum for dynamical Chirally Improvethfens Martina Joergler

random matrix theory (RMT) for the chiral gaussian unitary ensenjpleafégast in thes-regime
in the microscopic limit. Following the procedure i} [7], where these calculatisere done on
the same configurations f@rc;, we thus compare our distributions Dpy to RMT.
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Figure5: The cumulative distribution given by RMT compared to theritisition of the smallest eigenvalues
of the overlap operator. LefQp = 0, and k=1 (smallest eigenvalue); Rigl@;,p = 0, and k=2 (second
smallest eigenvalue), both for run (a).

A similar analysis for dynamical overlap configurations was dong]if][8né] far 2-flavor
staggered configurations ifi J10]. For the fits that determine the chiralecmates, we use the
cumulative eigenvalue distributions and look at the smallest and second draggjtas/alue in the
topological sector&op = 0 and|Qiop| = 1.

The values foiz for run (a)—(d), determined from the spectraly, are given in Tabl¢]2.
The fit was done using the Kolmogorov-Smirnov test, the errors computestiatistical bootstrap.

6. Problems and issues

The resulting values for the condensate still have to be renormalized. diibecdone by
determining the renormalization const@atby standard tools of non-perturbative renormalization.
In the case oD¢, the renormalization constants for the dynamical case have been computed in
recent work E|1]. FoDov, the situation is more involved, and the renormalization depends on the
value ofs. The weak coupling expansion for small momepthas a behavioDoy =i Y, pu/S+
0 (p?). This changes for the interacting case in a non-trivial way. Comparingethets for the
bare condensate for dJ| [5] with overlap, we expégby = Zsci 2c1/Zov ~ 0.64Zsc).

The dependence on the physical quark mass is also worth being explarddis point we
assume that the AWI-mass computed for our dynamical gauge fields is theasaheequark mass
entering the RMT-fits. In[[30] the overlap quark mass has been determgied the distribution
of topological charge, and found to be different from the value catledltor the underlying gauge
fields. We do not have sufficiently high statistics to follow this approachnbuértheless the sea
quark mass of the overlap operator should be adjusted, such that th@assnor the AWI-mass)
computed with the overlap operator agree with the pion mass of the CI operator



The eigenvalue spectrum for dynamical Chirally Improvethfens Martina Joergler

HMCrun | k | |Qup| | #confs.| —(Z)Y/3 MeVY/3
a (1] 0 12 338(6)
1] 1 25 332(3)
2| o0 12 310(3)
2| 1 25 319(3)
b 1] o 7 353(10)
1] 1 8 350(9)
2| o 7 362(5)
2| 1 8 330(6)
c 1] o 17 350(6)
1] 1 12 346(9)
2| o 17 340(3)
2| 1 12 322(5)
d 1] o 5 365(18)
1] 1 11 370(10)
2 o0 5 348(14)
2 1 11 346(2)

Table 2: Results for the value of the bare condengatr all runs of the HMC. The value dfrefers to the
smallest (1) or second smallest (2) (imaginary part of tiggrevalue.
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