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We present preliminary results for the chiral behavior @frged pseudo-Goldstone-boson masses
and decay constants. These are obtained in simulationg\wit2+1 flavors of tree-levelD(a)-
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those which we observe in the zero-momentum, scalar{Betimeson propagator.
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1. Introduction

The objective of our collaboration is to calculate hadronic observablé&dvane relevant for
determining fundamental quark properties, such as quark massesrhkiflguar-mixing and CP-
violation parameters, and to do so with controlled extrapolations to the phiisittadf N¢=2+1
flavor QCD, whereM, ~ 135MeV, the lattice spacing vanishes and the volume is infinite. To
achieve that goal we consider two approaches. In both, the seasmapesed ofN;=2+1 flavors
of tree-level O(a)-improved Wilson (W) quarkg]J1]. We perform “unitary” simulations whére
valence quarks are discretized in the same way as the sea quarks. \fWerfdsm “mixed-action”
calculations, with overlag[J2[} 4], Ginsparg-Wilson (GW) [5] valencergsa In the latter, the
valence sector possesses a full, continuum-like chiral symn{gtry [6] whisktlg simplifies the
renormalization of electroweak operators, such as those encountenedtial kaon mixing. It
also guarantees that matrix elements are automati©gty-improved, to the extent that the sea
quarks are. As discussed by Stefan Krieg at this conferdhce f&ntadvances have allowed us
to performN;=2+1 simulations, for instance, down ¥, ~ 190MeV witha ~ 0.09fm and in
cubic volumes of sid& ~ 4.2fm. Thus, we expect to be able to reach the near-continuum chiral
p-regime of Gasser and Leutwyler without the conceptual problems ofestadidermions|[]8]]9].
This means that we should be able to extrapolate lattice results to the physitahpm model-
independent way, by using Wilsof [1§J13], partially quenched (P@glcherturbation theory
(xPT) [L4 {1¥] for the unitary simulations, and mixed-action (MA) @& [L8,[13[1P] for the
GW-on-W simulations.

One of the drawbacks of using a mixed-action approach is the presémliscretization-
induced unitarity violations. Fortunately, it should be possible to accourih&low-energy man-
ifestations of these violations with MAPEPT. We present here preliminary results for the quark-
mass dependence of the masses and leptonic decay constants of the-@eklsione bosons
(PGBs) of chiral symmetry breaking. In particular, we investigate the&figf unitarity violations
in these quantities, as obtained in our mixed-action simulations, and attempteétatothese ef-
fects with those which we observe in the scalar, isotriglgfropagator, where they are expected
to be particularly large[J20]. Of course, our study of the masses araydmnstants of the PGBs
is primarily motivated by the very interesting phenomenology they give rise hay Bllow the
determination of a variety of fundamental quantities, such as light quarles\abe ratio of CKM
elementsVys/Vua| [B3] and important LO and higher-order low-energy constants (LEEshe
effective chiral Lagrangian. However, we postpone the presentatiogsults for these quantities
to later publications.

2. Finite-volume mixed-action PQxPT and unitarity violations

As shown in [2P] for the case ®i; degenerate flavors, the propagator ofbés affected by
potentially largeO(a?) unitarity violations in a mixed-action scenario. For the case which interests
us, withNf=2+1, to simplify expressions we suppose that the light gparfd valence\) quark
masses are tuned such that masses of the corresponding PGBs &revkgeaM,, = M. We
denote the strange sea quarksand byMss the mass of charge pseudoscalar mesons composed
of two valence quarks with the mass of ¢ Then, LO MAPQ(PT gives for the zero-momentum,

1From now on we call these mesons “non-sing@tpseudoscalar mesons.
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ap propagator:
Ca(t,A) = Z&(go,ar)a’ Y (Golia(%,)z(0)) (2.1)
X

o B2 2 aA
e 2 {CKK‘GHQ,C""(”‘ZW(M"”l)c""(t)}’
w

where the valence quarks are chosen to be degeneratemmvithn, = m,, and where we have
assumed, for simplicity, that the time and space extent of the lattice are infinieqUetmtityB is
the condensate over the square of the decay constaBg(go,aA ) is a renormalization constant
for scalar densities andl is a QCD renormalization scale. The functiddg,(t) denote the zero-
momentum propagators of the two-particle stad¥, and are given b¥xy(t) = exp[—(Mx +
My)t]/(4MxMy) at LO. There are two physical contributions, coming from intermediate @k
andrm states. The unitarity violations are of ord#rand are proportional to a quantify which
has mass dimension four. These violations only vanish in the continuum limit.dMerehey are
exponentially and polynomially enhancedtiralso compared to the contribution from tagnot
shown in Eq.[2]1). At asymptotic times, the unitarity violations are the dominanttibation.
Unitarity violations also affect PGB masses and decay constants, but bhllyG Let us
consider a pseudoscalar meson composed of two distinct quarks withsngasaadn,. Then,
according to NLO MAPQPT, the square of this meson mass has the following generic form:

(ME)SC = (mu+ mz)|3{1+ ﬁ [PQ‘|09$IJ7 Mi1, M22, My¢, Ms)
+(206 — aa) (1) (2MZ, + MZ) + (205 — a5) (U)MZ, + FV (2.2)

+aPu +a’A x {UV-logs(pt, M11, Ma2) + Y (u)}} } :

whereB andA are defined after Eq[(2.1); “PQ-logs” and “UV-logs” denote partigiyenched
and unitarity-violating quenched-like logarithms, respectivelyis the renormalization scale in
the effective theory and, in Eq. (2.2), the quark masses an8 thest both be either renormal-
ized in the same scheme in QCD or bayg{ ) is an a priori unknown counter-term; the LECs
a; are related to the original Gasser and Leutwyler constants thraygh = 8(4m)2Li(u); FV
stands for finite-volume correctiongj, is a mass-dimension three quantity which parameterizes
O(a) discretization errors and whose parametric size will be specified belote tNat in fits to
lattice results obtained at a single lattice spacing, the discretization err@aronal toafy and
a’Ayv(u) get absorbed into the LO LE®,

In applying the general form of Eq[_(2.2), it is useful to distinguish thrases of interest.
In the continuum or in the case of GW valence on GW sea quank@nd m, can be taken to
be the Lagrangian masses aficand By identically vanish, i.e. there are no unitarity violating
nor O(a) discretization errors. In our W-on-W unitary simulations, we takeand mp to be
the “measured” axial Ward identity (AWI) masses. Moreover, the coh@ans O(/\%CD) if the
fermions used are straight Wilson fermior@(,as/\%w) if they are tree-leveD(a)-improved as
they are in our simulations, or zero if they are non-perturbati@ky)-improved. FinallyA =0
and discretization-induced unitarity violations are absent. In the mixed-aGMhkon-W casem
andm, can be taken to be the valence, overlap Lagrangian maggebas the same parametric
size as for the unitary simulations, depending on the level of improvement aeth However, in
the mixed-action casé does not vanish a priori. Thus, we expect that meson masses will suffer
from discretization-induced unitarity violations at finde
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The NLO expression for the decay constdig, of a charged pseudoscalar meson is simi-
lar in form to Eq. [2.R), with the factofm + my)B replaced byF and where the “PQ-logs”and
corresponding counter-terms and finite-volume corrections are ctidgodhe partially-quenched
expressions appropriate for decay constants. The corresporetiegad form applies to the three
cases discussed above in much the same way, with the substit@fjonsBr andyiy — ¥. The
main difference appears in the GW-on-W case, where the mixed-actiomityniialations propor-
tional toa?A are purely valenc8U(3)-flavor breaking, and do not depend pn

3. Resultsfor the ag propagator and the charged PGB masses and decay constants

The results discussed below were obtained from simulations which werglnbat this con-
ference by Stefan Kried][7]. We recapitulate here only the main ingrediemiting algorithmic
considerations. The gauge action used is tree-level Symanzik impriodedT[Re sea quarks are
described by six-step stout-smearfd [23], tree-I&gl)-improved Wilson fermiongJ1]. For the
unitary, W-on-W simulations, the valence quarks are discretized in the sagpnémthe GW-on-W,
mixed-action case, valence quarks are three-step HYP-sméafed/g#mfermions([R 4], with
a negative mass paramepee 1.

We have performed five,#21 sea-flavor simulations at a lattice spaceng- 0.09fm (3 =
3.57). In these simulations, the mass of the charged pions composed of twedmlquarks are
My ~ 190, 300, 410, 490 and 570MeV. To keep finite-volume errors smalljralilations are
performed in cubic three-volumes with sidesuch thatM;L > 4. The strange quark mass used
in our simulations is slightly overestimated: with such a strange quark, the madsaoh, when
extrapolated in light-quark mass to the physical point, is approximately 7%ittiggrethe physical
kaon mass. There are 34 gauge configuratioddat 190 MeV, 68 aM;; ~ 300 MeV andO(100)
at the three other simulation points. In the mixed-action case, the overldpmaases are chosen
such that the mesons which they compose are approximately degenerateosétttimposed of
the corresponding Wilson sea quarks .My ~ 190 and 300 MeV, we have a second overlap valence
strange quark whose mass is approximately 30% smaller than that of theestemguark.

We begin with preliminary results for the zero-momentuag propagatorCs,,(t), defined in
Eqg. (2.1). In Fig[L we plot the unrenormalized propagat@ﬁ,re(t), as a function of Euclidean
timet, obtained in the two GW-on-W simulations with the lightestindd quarks. The propagators
go hegative at relatively short times and then asymptotically go back up ¢o dwreover, the
effect is less pronounced for the simulation with the more massive quatlencdawhich persists
as one increases theandd quark masses further. This behavior is qualitatively consistent with
the prediction of MAPQPT given in Eq.[(2]1), assuminfy > 0. The agreement can be made
quantitative also. To verify this, we perform fits of the propagatorsswngtotic timeg, to the PQ
and FV generalization of Eq[ (2.1) for the b&@g (t). The fits have only one parameter, namely
a*A. For the pre-factofB/Zs)?, we takeM2,/(m; +my), whereM; is the “measured” meson
mass andny > are the bare masses of the GW quarks which compose it. The kaon, piop and
masses which appear in the expressiorﬁ%?"e(t) are constrained to take on the values obtained
from prior fits to kaon and pion two-point functions. These mesons argosed of a sea and
a valence quark. We obtain their masses by combining the correspondangeavalence and
sea-sea masses at LO in the chiral expansion. This means that the paafhétat we fit here
contains contributions from a@(a?), mixed-action operator in the chiral Lagrangian. Fortunately,
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Figure 1: Bare, zero-momentum propagator of @eas a function of time over half the time extent of
our lattices, as obtained in our two GW-on-W simulationshwiite lightesu andd quarks. The solid curves
represent our best fits to the partially-quenched and firiteme generalization of E@.l) in the fit region,
and the dashed curves their extensions to earlier times.

if the same prescription is used for obtaining valence-sea meson massesawpear at NLO in
quantities such al\jtlf2 or F15, the unitarity violations there will be parameterized by the safde

The one-parameter fits @©22"4t) for M;; ~ 190 and 300MeV are performed fofa in the
range[12, 32}, wheret /a = 32 is the midpoint of our lattices in both cases. The results of these fits
are plotted in Fig[]1. As the figure suggests, both fits have gdgdof. The values obtained for
the unitarity-violation parameter aaéA = 0.015(6) and 0024(10), respectively, foM, ~ 190 and
300GeV, and are thus consistent. For the lattice spacing at which the simukateoperformed,
these values correspondd®/A ~ 0.27 GeV and B5GeV. Sinceay/A competes with pion, kaon
andn masses in the chiral expressions mfz andF;» in the mixed-action case, it is clear that
these unitarity-violating contributions cannot be neglected a priori.

We now turn to an analysis of the GW-on-W decay constant. We begin with daistidy,
because we use the extrapolatde; to determine the lattice spacing as well as to normalize cor-
rections in chiral expressions with factors (dﬁTaFn)z. aFy» is obtained from the pseudoscalar
two-point function using the AWI. Thanks to the chiral symmetry of the oyenalence quarks,
no renormalization is required. This is a simple example of the simplifications braigut by
the use of a mixed action with chirally symmetric valence quarks.

There are 21 lattice points faf,, of which 5 correspond to charged “pions”, 7 to “kaons”
and 9 to “non-singless’ pseudoscalar mesons. We fit these results to the NLO chiral expression
described in Se¢] 2. So as to remain, as much as possible, within in the fea@licability of
NLO xPT, we include in the fit only the 4 lightest pion and 4 lightest kaon points, Mith<
500MeV andVik < 590MeV. The fit has four parameters, which &rexs(My ), as(M,) anda®A.
Since theag propagator is more sensitive to unitarity violations than are the decay cts)sterfix
a*A to the value 0.024(10), through a Gaussian prior ingheThe NLO expression describes the
data well. Moreover, the resulting value @A is 0.025(8), confirming that the chiral behavior of
the decay constants is consistent with the presence of unitarity violatiors sitthobserved in the
ap propagator. The value af; obtained from a self-consistent extrapolation to the physical point,
using the infinite-volume, continuum fitted function, yields a lattice spacing-6f0.088(1) fm,
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Figure 2. The bare condensate ratio as a function of squared sea-@iss, in lattice units, for the unitary
simulations (left) and for the mixed-action simulationglft). The vertical scales in the two plots are
only equal up to a ratio of renormalization constants. Thedlsets of data (circles) in the W-on-W case
correspond, from top to bottom, to pion-like, kaon-like ammh-singletss-like pseudoscalar mesons. In the
GW-on-W plot, there are one additional kaon and two estoints at the two smalled,,’s, corresponding

to the additional valence strange quark that we considéreise simulations. The fits to E@Z.Z) are plotted
as line-segments around each fitted point. The physicaksuawe obtained from the fits by removing the
FV effects, and in the mixed-action case, the partial-ghemgeffects and unitarity-violating logs. The pion

curves are obtained by settitdy1=Mp>=M, andMss=ME>S, the latter being the physical, non-singst

pseudoscalar meson mass; the kaon curves, by sétiingM,, andMgzzMngs’,’st; the SU(3) curves, by

settingM1:=M2>=Mss—=M/,. The vertical dotted lines mark, from left to right, the &iilimit, the physical
pion and the physical kaon points.

where the error is statistical.

Next we consider chiral fits to the unitary W-on-W results for the conalensatioaBP3™ =
(aMy2)?/(amy +amp)83. The lattice results for this quantity are plotted in Fig. 2, as a function
of the squared sea-pion madsZ,. The different sets of points correspond to “pions”, “kaons”
and “non-singless’ pseudoscalar mesons. We fit these results to the NLO expression (E.By.
with A = 0. We include in the fit only the six points witkl,; < 500 MeV andMg < 590 MeV.
Here, the fit has only three parameters, nanBlf2as — a4)(M,) and(2ag — as)(My ). The NLO
expression describes the chiral behavioaBf3™very well.

We now turn to the condensate ratio obtained in the mixed-action, GW-on-W siomsla
Here,aBP3"™= (aMi2)?/(amy + amy)P?"® whereMy; is the valence meson mass angf®are the
corresponding bare overlap Lagrangian masses. The results foutinsity are plotted in Figd] 2,
again as a function d¥12,. As the plot indicates, the behavior @BP3"here deviates significantly
from that obtained in the unitary case. Moreover, some of the featurdgssabehavior, such as
the large increase oiBfgre for the “pion” points at smaleK, cannot be explained with only
continuum PQ chiral logarithms: a divergent term at srmﬁl appears to be required. Fortunately,
such a contribution is provided by the unitarity violations discussed in[$end Zxzhibited in
Eq. (2.2). We thus fit the lattice results to the NLO expression of [Ed. (2.@udmg the unitarity
violating term proportional ta?A. As for the decay constant fit, we fafA to the value 0.024(10),
obtained from theag propagator, through a Gaussian prior in iffe There are four parameters
in the fit, one more than in the W-on-W case. TheseBir€2as — a4)(My), (2as — as5)(My)
and a constrained*/A. Again, only the eight points witM,; < 500MeV andMyx < 590MeV are
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included. The description of the condensate ratio given by our NLOI&xmession is good. The
value ofa*A returned by the fit is 0.020(6). As already noted after Eq] (2.2), in eeffopmed
at fixed lattice spacing, the discretization error proportionapttu) gets absorbed intB, which
thereby acquires a spurioydT u-dependence. Of course, this dependence will be eliminated,
along with all other discretization errors, when the renormalized valuBs aiftained at different
lattice spacings, are extrapolated to the continuum limit. The valye cfiosen here i81,. A
lower value will raise the physical curves whereas a larger one will |okem. It is worth noting
that this spuriougt-dependence cancels at NLO in ratios suclmgém,q or (qa)n,=2/{(qQ0)n;=3-
Moreover, it only affects the fitted LECRas — a4)(My,) and (2ag — as)(My) very mildly. We
find very good agreement between the GW-on-W and W-on-W resultedse quantities.

These observations, together with the other results reported on hggessuhat unitarity
violations are present in our mixed-action results, and that we can sutbieac with MAPQYPT.
Of course, simulations at other lattice spacings are required to confirnmotinifusion.
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