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1. Introduction
Lattice quantum chromodynamics (QCD) has successfully calculated many of meson spec-

trum; however, there remain many challenges for the lattice community to resolve the myriad
states present in QCD. The case of the nucleon spectrum is one such battlefield. Consider the low-
est three states in the N spectrum (N, N ′ (P11) and N∗ (S11)), for example. Many earlier quenched
lattice QCD calculations[1] find a spectrum inverted with respect to experiment, with N ′ heavier
than the opposite-parity state N∗. Although the Kentucky group [2] managed to find the correct
mass ordering around pion mass 300–400 MeV (after taking care of the effects of the quenched
“ghosts”), no other lattice group has been able to reproduce the experimental ordering using dif-
ferent approaches. Furthermore, these are just the lowest few states in the N spectrum. There are
many more states seen in experiment for which lattice calculations could help to identify particle
properties.

This situation suggests an urgent need for full-QCD simulations that can resolve some of these
issues. In order to get better signal for the excited states (especially for the higher-excited nucleon
spectrum), one needs a lattice with a fine temporal lattice spacing. At the same time, we also
want to avoid finite-volume effects. Current dynamical lattice gauge ensembles manage to have a
reasonable lattice box with spatial dimensions about 3 fm, but unfortunately the lattice spacing is
about 2 GeV, which is not fine enough to allow determination of more than one excited state. One
solution to this situation would be to generate anisotropic dynamical lattices.

The anisotropic lattice has been widely adopted in lattice calculations. It was first used to sim-
ulate heavy-quark physics, such as charm, back in the era when the lattice spacings were too coarse
to use the relativistic quark action to simulate heavy quarks. Another main application is for calcu-
lations, such as glueballs[3] and multiple excited-state extraction[4], where the anisotropic lattice
has great improvements over isotropic due to the finer lattice time spacing. Previous results on the
anisotropic lattice include two-flavor anisotropic dynamical simulations done by CP-PACS[8] and
TrinLat collaboration[9].

In this work, we will use a three-flavor Sheikholeslami-Wohlert (clover) action with stout-
link smearing (in the spatial direction only) in the Schrödinger functional scheme[13]. We can
determine the gauge anisotropy by looking at the Wilson loop ratios. The ratio of the PCAC-current
quark mass with background field in space and in time tells us about the fermion anisotropy, which
has been determined in the past using the meson dispersion relation in large volume. The rest of
the coefficients are set to tree-level tadpole improved values, with the tadpole factors determined
from numerical simulation. The clover coefficients are fixed at tree-level tadpole-improved values,
which later we demonstrate are consistent with nonperturbative ones determined in the Schrödinger
functional scheme. Our configurations have been generated using the Chroma[19] HMC code with
RHMC for the third flavor and multi-timescale integration. For more details, see Ref. [11].

2. Methodology and Setup
2.1 Action

We use tree-level tadpole-improved O(a2)-improved Symanzik gauge action:

Sξ
G =

β
Nc

{

ut

ξ0u3
s

∑
x,s>s′

[c0Pss′ + c1Rss′ ]+
ξ0

u4
s
∑
x,s

[c0Pst + c1Rst ]

}

, (2.1)

where the ξ0 is the gauge anisotropy. We adopt the clover fermion action
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at QF =
1
ut

{

ut m̂0 +νtŴt +
νs

ξ0
∑
s

Ŵs −
1
2

[

ct
SW ∑

s
σtsF̂ts +

cs
SW
ξ0

∑
s<s′

σss′F̂ss′

]}

. (2.2)

The νt is a redundant parameter and set to 1 to resolve the doubler problem of Wilson-type
fermions. The νs reflects the ratio between fermion and gauge anisotropy. The cs,t

SW are the spatial
and temporal clover coefficients which are set as follows:

cs
SW =

νs

u3
s
, ct

SW =
1
2

(

νt +
1
ξ

)

1
ut u2

s
; (2.3)

these selections are discussed in Ref. [12]. The tadpole factors are later set to fixed values taken
from our early dynamical simulations, which agree amongst themselves within 1-2%. Thus we are
left to tune the remaining four coefficients: ξ0, νs, m0, β .

2.2 Stout-smeared links
We will use three-dimensionally stout-smeared link variables[10] within the fermion action.

Note that the smearing does not involve the time direction, so the transfer matrix remains physical.
As with other smearings, one should check the smearing parameter carefully to avoid potentially
incorrect short-distance physics. In this work, we set ρ = 0.22 and nρ = 2 for exploratory study.

With a nonperturbative determination of the clover coefficients at the target lattice spacing of
a = 0.1 fm, the scaling violations are about 1% in amV /

√
a2σ [17]. These previous scaling studies

used an isotropic quenched action. On the left-hand side of Figure 1 (where all the points on the
graph with fixed mπ/mρ = 0.7), we show the result from CP-PACS’s isotropic Wilson scaling be-
havior; our simulation measurement on the anisotropic lattice shows a more continuum-like scaling.
When we use stout-link smearing in the Wilson fermion action, we notice dramatic improvement.
In the clover case (on the right), similar tests are performed, compared with nonperturbative clover
coefficients. The stout-link smeared clover action point is compatible with the scaling.

2.3 Schrödinger functional
The Schrödinger functional[13] has been implemented in lattice QCD since the 1990’s. It

allows us to simulate at lighter pion mass (since the background field lifts zero modes); from
the PCAC relation we can check how close our cSW in the fermion action is compared with the
nonperturbative value.

We modify our definition of the quark mass to be

M(x0,y0) = r(x0)−
r′(y0)− r(y0)

s′(y0)− s(y0)
s(x0); M′(x0,y0) = r′(x0)−

r′(y0)− r(y0)

s′(y0)− s(y0)
s′(x0), (2.4)

where r and s are obtained from

r(x0) = 0.25(∂0 +∂ ∗
0 ) fA(x0)/ fP(x0); s(x0) = 0.5a∂0∂ ∗

0 fP(x0)/ fP(x0). (2.5)

fA(P) (with Γ = γ5γµ(γ5) ) is a correlation function of bulk fields (ψ , ψ) and boundary fields at t = 0
(η , η):

fOΓ(t) = 〈ψΓψ(x, t)∑
y,z

η(y, t)Γη(z, t)〉/(N2
f −1). (2.6)

Similar definitions apply to r′ and s′, but the f ′A(P) now involves the other boundary fields at t =

T,T −1 (η ′, η ′) and a sign change. Later in this work, we will calculate the modified quark mass
to tune our coefficients.
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Figure 1: The scaling behavior of quenched Wilson gauge
action with Wilson (left) and clover (right) fermion actions.
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Figure 3: λmin(Q2) measured in simulation with (left) and without (right) a background field. The x-axis is
in units of 5 trajectories.

On the isotropic lattice, one can also determine the cSW coefficient in Schrödinger functional
scheme from the PCAC relation. We require the nonperturbative value of cSW to lie at

∆M = M(x0,y0)−M′(x0,y0) = ∆M(0), (2.7)

where ∆M(0) is the tree-level mass splitting obtained from a classic background field simulation
with the same setup of gauge and fermion actions. Previous dynamical works were carried out
by Alpha with N f = 2[14] using Wilson gauge only, CP-PACS for two-flavor and three-flavor
calculations with Wilson and Iwasaki gauge actions[8, 15, 16]. However, all applications of the
Schrödinger functional so far have been limited to isotropic lattices. This work is the first to apply
the Schrödinger functional to dynamical anisotropic lattices.

In this work, we will implement the Schrödinger functional setup on anisotropic lattices for
the first time in dynamical simulations. We find that in the three-flavor (anisotropic) clover action
(with parameter m0 = −0.054673, νs = 1) simulation, the lowest eigenvalue of Q†Q is lifted by
the background field. This helps to reduce the frequency of exceptional eigenvalues, as shown in
Figure 3. The eigenvalue changes dramatically from 0–6000 trajectories without the background
field (right figure). A reduction in near-zero eigenvalues gives us better acceptance rate in the
HMC.

We also implement the background field not only in the “t” direction (as conventionally used
in Schrödinger functional) but also the “z” direction. Less is known about putting the background
field in the “z” direction. (We label the modified masses Ms and Mt with respect to the direction
of the boundary field direction and similarly for the mass difference ∆Ms and ∆Mt .) We measure
M(x0) with various Lz, showing results in Figure 2. When we increase the length in the z direction,
good signal appears from 12 to 16 but not beyond 24. This is because the background field becomes
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Figure 4: m0 dependence of the ratio ξR/ξ0 for
ν = 1
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Figure 5: The measured Ms,t (in units of a−1
t ) at each

ν value as a function of m0

too weak at large Lz. When we increase the background field signal, which is proportional to Φ
at Lz = 24, the signal is still not as good as for Lz = 16. Similar checks can be done regarding
the size of Lx,y. As we increase the value from 8 to 12, the signal shows improvement. The right
panel of Figure 2 shows an optimal choice of 123 for the spatial volume; this is what we use in the
remainder of this work.

2.4 Proposed conditions
In summary, we implement Schrödinger functional with background fields in two directions:

“t” and “z”, and we measure the quantities Mt,s and ∆Ms,t . We will determine the gauge anisotropy
ξR from the ratios of static quark potential (more details in the following section). We will get the
fermion anisotropy νs by measuring the PCAC mass ratio in finite-volume Schrödinger functional
scheme; in our coefficient definition, we are looking for asMs/at Mt = ξR. We set the two clover
coefficients (cs,t

SW) to the stout-smeared tadpole coefficient, where the tadpole factor is numerically
tuned. We further check the nonperturbative conditions in Eq. 2.7 from our measured the PCAC
mass difference ∆Ms,t ; we find that they are consistent.

3. Numerical Results
In this work, we fix β = 2 for an exploratory study on the tuning of action parameters.
The natural way to look for anisotropy in the gauge sector is to start with the static quark po-

tential. We calculate ratios of Wilson loops involving the temporal direction Wst and those without
it Wss[18, 8]:

Rss(x,y) =
Wss(x,y)

Wss(x+1,y)
→asym. easVs(yas); Rst(x, t) =

Wst(x, t)
Wst(x+1, t)

→asym. easVs(tat). (3.1)

The finite-volume differences in the ratio Rst and Rss are the same if Nt = ξRNs. Thus, there
are no finite-volume differences in Vs(yas) or Vs(tas/ξR) either. Naturally, one should impose
Rss(x,y)

!
= Rst(x, t) to get the renormalized ξR. The ξR/ξ0 is consistent with 1 within a few percent

from our parameter searching. (Figure 4 shows a special case when νs = 1). We can set ξ0 = 3.5
and tune only the remaining two parameters.

We search the remaining two-dimensional space by varying the parameters νs and m0; the
corresponding PCAC mass (in units of a−1

t ) is shown in Figure 5. It is interesting to note that when
νs is around 1 (the classic value), Ms ≈ Mt among range of different m0 values. Figure 6 shows one
of our parameters when m0 is fixed close to the chiral limit (in our study, it is at −0.07, slightly
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Figure 7: Meson dispersion relation

below the critical mass). As we can see, at νs = 1 the at Ms is automatically equal to at Mt . This
suggests that with our setup (stout-smearing, tree-level tadpole coefficients for the fermion action)
the tunings are consistent with the classic prediction.

One question is: how does our condition for the fermion anisotropy compare with the conven-
tional dispersion relation (c2 = (E2 −m2)/p2) in a large volume? To demonstrate that the two are
consistent at O(a), we pick one of our simulation points, m0 = −0.054673 and νs = 1.0 (where
as = 0.116(3) fm), and we perform a dynamical simulation on a bigger volume, 123 ×128 without
Schrödinger functional scheme. We measure the pion dispersion relation (shown in Figure 7), and
we find c2 = 1.088(8). This is about the same amount of discrepancy as in the Schrödinger func-
tional measurement of Ms and Mt . Therefore, since it uses smaller volumes, probing the condition
Ms = Mt is a more efficient way to tune the fermion anisotropy νs than the dispersion relation and
with Schrödinger functional, one can work on smaller pion masses (even near chiral limit) without
too much additional cost.

The final check is: how good is our initial tadpole-improved cs,t
SW? In the Schrödinger func-

tional scheme, such nonperturbative coefficients are determined by requiring that

∆M = M(2T/4,T/4)−M ′(2T/4,T/4) = ∆MTree,M=0 (3.2)

be satisfied. The tree-level ∆M value is obtained from simulation in a classical background field.
In the dynamical simulation with parameter νs = 1 and m0 = −0.056266, we find Ms = Mt is
satisfied. (See Figure. 5 in which the thickness represents the number of the measurements done
with that specific choice of parameters.) We further check the NP condition: the tree-level values
of as∆M are −0.00056166 and −0.00028645, and the measured as∆Ms,t are −0.000257(424) and
0.00009(12). Another case at parameters νs = 0.9 and m0 = −0.069 gives Ms consistent with
Mt within the errorbar. The NP cs,t

SW condition is also satisfied. We found that tadpole-corrected
tree-level coefficients with the stout-link smearing are consistent with the nonperturbative O(a)-
improved coefficients in the three flavor dynamical simulation.

By imposing the condition of equality on the two PCAC masses (Mt , Ms) measured under the
imposed background fields in two directions: t and “z”, we will find the correct parameters νs and
m0. A linear interpolation Ms,t(νs,m0) = bs,t +ds,tνs +es,tm0 would work for small variations in the
parameter space. Some additional runs in the future will help us better determine these coefficients;
a good interpolating form will help us when tuning the strange quark in the future.
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4. Conclusion and Outlook
We demonstrate that the Schrödinger functional combined with stout-link smearing shows

promise in dynamical runs. Further, we show in Schrödinger functional scheme that stout-link
smearing and nonperturbatively modified tadpole factors automatically make our O(a)-improved
coefficient cs,t

SW tuning condition fulfilled. Our proposed finite-box fermionic anisotropy νs tuning
(using the ratio of the PCAC mass measured with background field in space and time directions) is
as good as conventional large-box runs but more efficient.

Our generation of two-flavor anisotropic (ξR = 3) Wilson fermion configurations is complete.
This includes two lattice sizes: L ≈ 1.8,2.6 fm with mπ ≈ 400,570 MeV. In the near future, we
will begin to fine tune the strange quark mass. We will also calculate O(a)-improved coefficients:
cV,A and ZV,A for people who are interested in using these configurations for other physics.
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