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Table 1: Quantum numbers for singly heavy baryons #or 1 flavor symmetry :Z denotes strangeness.
The states with asterisks represent the s:binates. The fifth and sixth column represent the light diquark
irreps for single taste and four tastes, respectively.

1. Introduction

There have been a number of attempts to investigate heavy baryons in terms of experimental
as well as theoretical methods. In lattice QCD, several calculations have been performed in the
quenched regiméel[ 2, 3,4, 5,16, [7] and given a fair agreement with the experimental results. In
[8], two of the authors have reported the results of preliminary study for the singly charmed baryon
mass spectrum using the dataf 1 flavors dynamical improved staggered quarks. Since the
staggered fermion provides very fast simulations and much less statistical errors compared to the
other available frameworks, (see, for example, R®¥f [it is worthwhile to pursue more extensive
studies of those baryons in terms of staggered light quarks. It is then desired to establish the group
theoretical classification of pairs of staggered quarks (staggered diquarks) in order to extract the
desired spin and parity state in the continuum limit. [19][ we construct all the possible time-
local staggered diquarks embedded in singly heavy baryons and establish the group theoretical
connections between lattice operators and continuum representations w.r.t. spin, tételand
flavor symmetries.

2. Staggered Diquarks in the Continuum Spacetime

A singly heavy baryon operator consists of two light quarks (up, down or strange) and one
heavy quark (charm or bottom (or top)). The quantum numbers of singly heavy baryons are listed
in Table1l. In this section, we classify the irreps of the staggered diquarks w.r.t. spin, flavor and
taste symmetry group in the continuum spacetime. We especiall2talieas the flavor symmetry
group under which the recent dynamical simulations of staggered lattice QCD are performed.

Let us begin with reviewing the diquark irreps for mass degenerate light quarks of single taste,
namely physical valence quarks. The success of non-relati@sti6) quark model suggests that
the diquarks should belong to the irrediks, the symmetric part 06 ® 6, which has the following
decomposition int®&U(2)s x SU(3)g, the direct product of non-relativistic spin astl(3) flavor,

SU(6) > SU(2)s x SU3)E
215 — (33, 63) D (1A73A), (21)
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where the labeling represents the dimension of each irreps while the subgaipds, indicate
the symmetric and anti-symmetric part, respectively. el flavors,SU(3)g is decomposed into
SU(2), isospin group. Accordingly, we have

SU2)sx SUB)E S SU(2)sx SU(2),
(35,6s) — (35,35)0®(35,2) 1D (3s,1) 2 (2.2)
(1a,3a) — (1a,14)0® (1a,2) 1, (2.3)

where subscriptd, —1, —2 denote the strangeness associated with each irrep. Each of these irreps
has one-to-one correspondence to the physical diquark state in singly heavy baryons, as listed in
the second last column of Talilz

As for the light staggered quarks having four tastes with degenerate mass, theShldye
flavor symmetry is extended ®U(12); flavor-taste symmetrylfl]. Correspondingly, the stag-
gered diquarks belong to the symmetric irrep$bi{24) which has the following decomposition,

SU(24) D SU(Z)SX SU(lZ)f
3005 — (3s,78s)  (1a,66p). (2.4)

For2+ 1 flavor staggered quarks, t&J(12) flavor-taste symmetry group is brokenSuJ(8)y y x
SU(4),, whereSU(8)yy denotes the symmetry group for two light valence quarks wiil¢4), the
one for a strange valence quark. The decompositidiifi2) s into SU(8)y x SU(4); gives,

SU(2)sx SU(12)f > SU(2)s x SU(8)xy x SU(4),
(357 783) - (357 3687 1)0 D (357 874)*1 S (337 l) 103) -2y (25)
(1a,66a) — (1a,28a,1)0® (1a,8,4)_1® (1a,1,64)_2, (2.6)

We assume in the continuum limit that the taste symmetry restores and all the four tastes become
equivalent. Then we see all the irreps excély,1,6a)_» are to be degenerate with physical
diquarks under this assumption. We list the staggered irreps for the physical diquarks in the last
column of Tablel. The strangeness?2 spin singlet diquark statéla,1,64)_2 in (2.6) does not
correspond to any physical state in continuum limit.

In order to make contact with the lattice symmetry group, we further decompose the physical
states intdSU(2)s x SU(2); x SU(4)T as follows,

SU(2)s x SU(8)xy x SU(4); > SU(2)s x SU(2), x SU(4)r

25t (35,365, 1)o — (3,35, 10)0 (3s,1a,6a)0 7
=07 (35,8.4)-1 — (35,2,105) 1% (35,2,64) 1 (2.8)
Q5+ (35.1,105) 2 — (35,1,105) (2.9)
No: (1a,284,1)0 — (1a,1a,10s)0® (1a,3s,6a)0 (2.10)
Zo: (1a,8,4) 1 — (1a,2,105) 13 (1a,2,6p) 1. (2.11)

The main goal of this article is to construct the lattice staggered diquark operators categorized into
the physical irreps given in the right hand sidesa)-(2.11).
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3. Staggered Diquarks on the Lattice

The symmetry group of staggered fermion action on Euclidean lattice was first elaborated in
[15,/16] and successively applied to classifying staggered baryons as well as mig2ai3; [14].
The important symmetries of staggered fermions in our stud@@reotationsR(P?), shift trans-
formationsS,, space inversiofs. Since the shift operatior$, contain taste matrices, pure transla-

tionsT, may be represented by the squar&efT, = 321 Discrete taste transformations in Hilbert
-1
space are readily defined &, = S, T, *. The =, generate 32 element Clifford group which is

isomorphic to the discrete subgroup ®(4)t in the continuum spacetime. Since the space in-
version contains a taste transformatiey) the parity should be defined IB/= =4ls. Note that the

parity is non-locally defined in time direction sinég is non-local in time. For the purpose of
spectroscopy, we are particularly interested in a symmetry group generated by the transformations
which are local in time and commuting wil. Such a group is called geometrical time slice group
(GT 9 which is given by

GTS= G(RM =, 1s), (3.1)

wherek, |, m=1~ 3[12,113,14]. The defining representation &T Sis given by the staggered
quark fields projected on zero spatial momentum. It is an eight dimensional representation denoted
as8. The anti-staggered quark fields also belong to the represenBafldive GT Srepresentation of
staggered diquark is accordingly expresse@by8. The decomposition d x 8 into the bosonic
irreps is given in/13],
8% 8 — z {1050123 + 3050123 + 3//030123 + 3////050123 + 6050123}, (3.2)
Os=+1,0123—==+1

wherel, 3, 3", 3" and6 are representing the bosonic representationgTo8with gs, the eigen-
value ofls and oy 23, the eigenvalue dD(=1=5=3).

The irreducibly transforming diquark operators are listed in T2nd3. As in the me-
son case, all the irreps are categorized into four classes from 0 to 3, depending on how far the
two staggered quarks are displaced each other. The third column of the tables gives the operator
form of the diquarks. The fourth column gives the correspond@idirreps. Then, and{, de-
note the sign factors defined Iy, (x) = (—1)" -1 and{,(x) = (—1)%+T X4 respectively,
while € is defined as(x) = (—1)* "X The Dy represents the symmetric shift operators
defined byDy@(X) = 3[@(X + a) + @(x — a)]. For notational simplicity, the sum over, the
color and flavor indices are suppressed without any confusion. For exaymByxx stands for
zxX?l(x,t)nk(x)Dkx?z(x,t). As far as the lattice symmetry gro@ Sis concerned, each diquark
operator is formally corresponding to the meson operator giveb3hntfirough replacing the left-
mostx by x. This is because the staggered quark and anti-quark belong to the&zSagieep for
each color and flavor. The, in the fifth column denotes the eigenvaluexafwith which the parity
is given byP = gs04. The sixth column gives the spin and taste matrice® 't which come
into the diquark operators in the spin-taste bagis(Cl' s® (FtC~1)T)y, where the superscrifit
denotes transpose aB@dlenotes the charge conjugation matrix. The presenGeaotiC~* ensures
the covariant properties under the spin and taste rotations in the continuum limit. Notice that the
assignment of s® 't for eachGT Sirrep is systematically different from the meson case, where
the operators are given @§(I's® (F1)T) in the spin-taste basis.
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class No. operator GT S(%7123) gy Fs@lt JP order  (SU(2)s,SU(4)T)

0 1 XX 1+ + V5 ® ¥ ot 1 (1a,6a)
- Y4 ® Va 0" p/E

2 nalaxXx 1 +  vpouk  0F 1 (1a:6a)
- 1®1 ' p/E

3 MkedkX X 3"t + K ® W i 1 (35,105)
- Y@YW 17 p/E

4 nadankeduX X 3T + Wya@wys 1t 1 (3s,105)

- WKy 17 p/E

1 5 XNkDkX 3t + WY D Vs 1 p/E
- WYa® Va 1 1 (3s,10s)

6 NalaX kDX 3 + Moy 17 p/E
- wel " 1 (3s,6a)

7 XE€4Dkx 3 + 1®w 0~ p/E
- k%W OF 1 (1a,10s)

8 N4{ax €4y X 3=+ + Y2 ® WVa 0 p/E
- ¥ ® Y5 0" 1 (1a,64)

9 keXmbix 6 + WY ® W 1 p/E
- Ym @ Y Ym 1t 1 (3s,10s)

10 NalankedkXmbDi X 6" + @ Wys 17 p/E
— yma®@ Wy 1t 1 (3s,6a)

Table 2. GTSirrep., g4, 's® 't and continuum states for staggered diquark operators up to class 1.
(k,I,m=1~ 3, k#1| # m=#Kk). The summation ovex, flavor and color indices are omitted.

class No. operator GTS(r%%123) gy sl JP order (SU(2)s,SU(4)T)
2 nu XnkDi{mDi x} 3+ + ey 11 (3s,6a)
- ypow 1 p/E
12 NalaxnkDi{mDi x} 3t +  meuk 11 (3s,6a)
- Wy el 1~ p/E
13 XDi{4Dix} 3 +  %®¥Wmya 0° 1 (1a,105)
- wu®wmpk 0 p/E
14 N4laX kDk{ 4D X} 3t + w01 (1a,10s)
- 1 wu 0~ p/E
15 NmlmX NMkDk{ 1D X } 6+F + WO 1t 1 (3s,105)
- ¥Bews 17 p/E
16 N44aNmlmXNkDk{ D1 X } 67 + Y % ¥ 1 (3s,105)

- Wm®¥ym 17 p/E

3 17 XxN1D1{n2D2{nsDsx}} 1+ + ya®y  0°  p/E
- poy  0F 1 (1a,10s)
18 Naaxn1D1{n2D2{nsDsx}} 1 + 1lewk 0 p/E
— Vays ® 1 o 1 (1A76A)
19 NkedkxN1D1{n2D2{n3Dax}} 3= +  ¥wmeO% 1 p/E
- Kk®WWm 1t 1 (3s,105)
20 n4lankeldkxniD1{n2D2{nsDsx}} 3= + wwewm 1°  p/E
- Wnuews 1t 1 (3s,6a)

Table 3: GTSirrep., 04, 's® 't and continuum states for staggered diquark operators class 2 and 3.
(k,1,m=1~ 3, k#I| # m+# k). The summation ovex, flavor and color indices are omitted.
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4. Connection between lattice and continuum irreps

Consulting the relations between lattiR€ irreps and continuum spin irreps given i8] and
assuming that the ground states of lattice irreps correspond to the lowest possible spin in the con-
tinuum limit, one could make an assignment of spin and pdFfitior eachGT Sirrep. See the sev-
enth column of Table& and3. One also see that the combinatio@8s = Cy, C\Y4,Cya¥s,Cs,
generataupperx upperproducts of the Dirac spinors in Dirac representation for each taste and
then give rise ta7(1) contributions, while the combinationS['s = C,Cys, Cy\f,Cs, generate
upperx lowerproducts, so that they are suppressedp/E) in the non-relativistic limit. See the
second last column of TabRand3. An important notice here is that only the positive parity states
survive in the non-relativistic limit, which is in accordance with the property of physical diquarks.
As for theSU(4)t irreps, one sees that the combinatidhgC 1 = uC=1, y,C~1, uyC1, uyaC =2,
are symmetric so that they altogether belond@girrep of SU(4)t, while the anti-symmetric six
combinationd 1C~1 = C™1, yysC 1, yuy5sC~1, 5C 1, belong to6, irrep of SU(4)1. The assign-
ments of non-relativistiSU(2)s x SU(4)r for the lattice irreps are readily given for th@(1)
operators. They are listed in the last column of the tables. The final step is to take into account the
2+ 1 flavor symmetry, which could be done in a straightforward manner. The decomposition of
continuum spin2+ 1 flavor and taste symmetry group into the lattice symmetry group is given by,

SU(Z)SX SU(2)| X SU(4)T D) SU(2)| x GTS (4.1)

In Table4, we list all the lattice diquark operators which are local in time and categorize them into
each continuum irrepSU(2)s, SU(2),, SU(4)t)z previously given inl2.7)-(2.11).

5. Summary

Continuum and lattice irreps of staggered diquarks Blti4) taste symmetry i2 + 1 flavors
were studied. We have started from 8ig(24) symmetry group which is thBU(4) taste extension
of ordinary SU(6) non-relativistic quark model. This procedure has been also taken in the study
of staggered baryon classificatiordsl]. As for the lattice representations, we have consulted the
lattice symmetry group of staggered fermion action elaborate@i5rilg]. Although the irreps of
lattice symmetry grou T Scannot have any definite parity, we have explicitly shown that only
the positive parity state contributes in the non-relativistic limit, which is in accordance with the
property of physical diquarks.

Acknowledgments

We would like to thank S. Basak, C. Bernard and C. DeTar for useful discussions and com-
ments. We thank J. Bailey for important comments on the physical states. This work has been
supported by U.S. Department of Energy, Grant No. FG02-91ER 40661.

References

[1] K.C. Bowleret al.(UKQCD Collaboration), Phys. Reid54 (1996) 3619.



Staggered Diquarks for Singly Heavy Baryons Kazuhiro Nagata

No|  =5):(3s,35105)o0 =0 1 (35.2.105) 1 QY : (3s,1,105)_»

3 kel nkedkls+ nkedsl nkedkss

4 Nadankedll Nalankedkls+ nadankedks! Nalankedkss

5 1 NkDyl I nkDys+ snkDkl snkDks

9 nkedIm Dyl Nk€klmDys+ nkedksm Dyl nkedksmDis

15 Nmdml NkDk{ {1 Dy 1} Nm&ml NkDk{ {1 D18} + NmdmsNkDx{{1D11'} NmmsnkDk{{i Dy s}

16| NalaNmmlNkD{{ D11} NaCaNmCml NkDk{{ D1 S} + Nadanm{mskDk{{ Di1} n444Nm{msNkDk{{ Dy s}

19 keI n1D1{N2D2{N3Dsl } }|Nk&qkl N1D1{N2D2{n3D3s} } + Nkelksn1D1{N2D2{n3Dsl } } |nkedksn1D1{n2D2{nsDss} }
No. %) ¢ (35.1a.64)0 = 1 (35.2.60)1

6 Nadal1NkDkl2 — Nadal2nkDyl1 N4qal NkDxs— NadasnkDyl

10 NalankedlamDilz — nadankedklamDila Nalank€dl mDis— nadankedksm Dyl
1 l1kDi{mDil2} —l2nkDi{mDil1} [NkDi{mDis} — smDi{mDi1}
12 Nalal1nkDi{mDil2} — nadal2nkDy{m D11} N4ZalNkDi{ M Dy s} — nalasnDi{m D1}
20|n4dank€lkl1n1D1{N2D2{N3Dsl2}} — Nalankeldkl2n1D1{N2D2{N3Dal1}}|nalankedklN1D1{N2D2{N3Dss}} — n4lankelksniD1{n2D2{nsDal}}
No. Ao (1a,1,10s)o =0 (15,2,105) 1

7 [16¢kDyl2 — 126 {kDyl1 | £{xDys— se kDl

13 118Dk {4iDil2} — 124Dy { 1Dy 11} 1{kDk{¢ Dys} — sCkDk {4 D1}

14| n44al1dkDk{{Dil2} — Nadal2kDk {4 Dy l1} 14441 &D{ 4 Dys} — Na{as{Dy{{ Dy 1}

17|11n1D1{n2D2{Nn3D3l2}} —12n1D1{N2D2{N3D3l1}}|IN1D1{N2D2{N3D3s}} — sn1D1{n2D>{nzDal } }

No. /\Q . (1A~,3$~, GA)O EQ . (lA,Z, GA),]_

1 1l Is+sl

2 Nadall N4Qals+ nassl

8 Nal4l €Dyl N444l €D+ N4dase kDl

18|n44lN1D1{n2D2{N3Dal } }|Nalal N1D1{Nn2D2{N3D3s} } + Na{4sN1D1{N2D2{nsDsl } }

Table 4: Lattice staggered diquark operators categorized into the continuum irreps
(SU(2)s,SU(2)1,SU(4)T)z : Thel ands denote light and strange quark, respectively. No. indicates
the operator number in Table 2 and 3. The summation e color indices are omitted.

[2] J. M. Flynn, F. Mescia and A. S. B. Tarig (UKQCD Collaboration), JHER®7, 066 (2003)
[3] N. Mathuret al,, Phys. RevD66 (2002) 014502.

[4] R.M. Woloshyn, Phys. LetB476(2000) 309.

[5] S. Gottlieb and S. Tamhankar, Nucl. Phys. Proc. Supf#.(2003) 644.
[6] A.AliKhan et al, Phys. RevD62 (2000) 054505.

[7] T.W. Chiu and T.H.Hsieh, Nucl. PhyA755 (2005) 471c.

[8] S. Gottlieb and H. Na, PoBAT2006, 191 (2006) hep-lat/0610009 .
[9] C. Aubinet al(MILC Collaboration), Phys. Re!D70(2004) 114501.
[10] S. Gottlieb, H. Na and K. Nagata, arXiv:0707.3537 [hep-lat].
[11] J. Bailey, Phys. Re\D75, 114505 (2007).
[12] M.F.L. Golterman and J. Smit, Nucl. Phy&255(1985) 328.

[13] M.F.L. Golterman, Nucl. Phy$8273(1986) 663.

[14] J. Smit, “Hadron Operators for Staggered Fermions",
at Conf. Advances in Lattice Gauge Theory, Tallahassee, Fla., Apr 10-13, 1985.

[15] C.P.van den Doel and J. Smit, Nucl. Ph228(1983) 122.
[16] M.F.L. Golterman and J. Smit, Nucl. Phy&245(1984) 61.
[17] S. Gupta, Phys. Rel260 (1999) 094505.




