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1. Introduction

Thanks to recent algorithmic improvements and the availability of a new generation of ca-
pability computers, simulations with dynamical Wilson fermions can now be extended to much
lighter quark masses and bigger lattices. In recent years the QCDSF collaboration has significantly
extended the number of ensembles of gauge configurations with N f = 2 flavours of O(a)-improved
Wilson fermions. These datasets cover a large range of quark masses as well as different lattice
spacings and volumes. In principle, this puts us in the position to check for systematic errors that
affect essentially all lattice calculations, i.e. finite size corrections, discretisation errors and errors
due to extrapolations to the physical quark masses or the chiral limit.

For the analysis of both, finite size effects and the quark mass dependence, results from chiral
effective theories can be used to correct the simulation results or to guide extrapolations. Although
the strategy of combining the results obtained from lattice simulations and chiral effective theories
has led to a consistent picture for various observables, e.g. the pion decay constant [1], the mass of
the nucleon [2], the axial coupling of the nucleon [3] or the nucleon electromagnetic form factors
[4], this approach suffers from the paucity of lattice results in the region where chiral perturbation
theory is expected to be applicable.

Another source for systematic errors stems from the translation of the lattice results into phys-
ical units. A quantity which is often used for this purpose is the Sommer scale r0. While this
quantity has the advantage that on the lattice it can be determined with relatively high statistical
accuracy, its experimental value is far less well known. To avoid depending on this experimental
value, which relies on model assumptions, one can alternatively request lattice results for a quantity
X , which has the dimension of a mass (e.g. the pion decay constant or the mass of the nucleon), to
be equal to the corresponding experimental result, i.e. rlat

0 X lat = r0 Xexp. The results from differ-
ent collaborations suggest that the resulting value for r0 is significantly smaller than the typically
quoted experimental number r0 ' 0.5fm. In this paper we will use r0 = 0.467fm which allows
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Figure 1: The left plot shows the values for r0(β ,κS) together with a fit to Eq. (1.1). In the right plot
mN(mPS = mπ), which is determined from fits to Eq. (2.1) for different values of r0, is shown as a function
of r−1

0 .
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for easy comparison with our previous results. Our most recent results for the nucleon mass (see
next section and Fig. 1) and the pion decay constant (see [1]) suggest that the actual value is even
smaller. To define our scale independent of the quark mass we extrapolate the measured values of
rlat

0 (β ,κS) to the chiral limit using the ansatz

ln
rlat,c

0
a

= A0(β )+A2(β )
(
amPS(β ,κS)

)2
, (1.1)

where Ai(β ) = Ai0 +Ai1(β −β0)+Ai2(β −β0)2 and β0 = 5.29. We fit our data in the range amPS <

0.5 and find χ2/Nd.o.f. = 6.7/12 (see Fig. 1).

2. Masses

The mass of the nucleon, mN, and delta, m∆, are experimentally well-determined quantities.
However, for both quantities calculations using baryon chiral perturbation theory (BχPT) suggest
a rather non-trivial quark mass dependence. In an infinite volume mN depends on the quark mass
in the following way [2]:

mN(mPS) = M0−4c1m2
PS−

3gA,0
2

32πF2
0

m3
PS + (2.1)[

er
1(λ )− 3

64π2F0
2

(
gA,0

2

M0
− c2

2

)
− 3

32π2F0
2

(
gA,0

2

M0
−8c1 + c2 +4c3

)
ln

mPS

λ

]
m4

PS

+
3gA,0

2

256πF0
2M0

2 m5
PS +O(m6

PS) .

Even extending our fit interval to 0 < mPS . 650MeV does not allow us to determine all parameters.
We therefore restrict the set of free fit parameters to the nucleon mass in the chiral limit M0, the not
very well known low-energy constant (LEC) c1 and the counter-term er

1(λ ) (we use λ = 1GeV).
For the other parameters, i.e. the LECs c2 and c3, the pion decay constant F0 and the nucleon axial
coupling gA,0, we use the phenomenological estimates listed in Table 1. Our nucleon mass data and
the fit are shown in Fig. 2. Note that all our results seem to fall on a universal curve, indicating
discretisation effects to be small. We therefore ignored O(a2) effects in our fit ansatz. We observe
that mN(mPS = mπ) is consistent with experiment. Furthermore, we find c1 = −1.02(7)GeV−1,
a value which is consistent with other estimates [11]. We have repeated our analysis for different
values for r0. The results are shown in Fig. 1. If we set mN = mexp

N we obtain r0 = 0.457(3) fm.
To extrapolate our results for the mass of the delta m∆(mPS) we fit these to the second order

small scale expansion (SSE) expression [10]

m∆(mPS) = M∆,0−4a1m2
PS−

3
32πF2

0

25h2
A

81
m3

PS, (2.2)

c2 3.2GeV−1 See [2] ∆0 0.271GeV [6] gA,0 1.2(1) [9]
c3 −3.4GeV−1 See [2] F0 0.0862GeV [7] 〈∆x〉(u−d) 0.21 [8]
cA 1.5 [5] M0 0.889GeV [8]

Table 1: Phenomenological values used as input to our fits.
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Figure 2: Lattice results for mN (left) and m∆ (right) together with a fit to Eq. (2.1) and Eq. (2.2). The open
symbols indicate data which has not been included in the fit. The filled squares symbols in the left plot show
preliminary data on larger lattices which has not been included in this analysis.

where we fixed F0 to the value given in Table 1. We find that m∆(mPS = mπ) is equal to the ex-
perimental value within statistical errors. The other fit parameters are consistent with expectations
[10]: a1 =−0.8(3)GeV−1 ' c1 and hA = 1.5(4) . 9gA/5.

3. Nucleon axial coupling

We will now consider the form factor of the nucleon axial current GA(Q2) at zero momentum.1

The axial coupling constant gA = GA(0) is determined from the renormalised axial vector current
AR

µ = ZA (1+bA amq)Aµ , where amq = (1/κ−1/κS
c )/2. Here we only consider the iso-vector case

where contributions from disconnected terms cancel. While ZA is known non-perturbatively [3],
bA is only known perturbatively and is computed using tadpole improved one-loop perturbation
theory. Note that for forward matrix elements there is no need for improvement of Aµ .

The quark mass dependence of the iso-vector nucleon axial coupling gA(mPS) has been calcu-
lated using Heavy Baryon χPT (HBχPT) [3]. These calculations have been performed both in the
infinite volume limit as well as for a finite spatial cubic box of length L. We define gA(mPS,L) =
gA(mPS)+∆gA(mPS,L), where ∆gA(mPS,L) denotes the finite size effects.

We fit our data to the results obtained in [3] fixing the values for F0, the leading axial N∆

coupling cA and the N∆ mass splitting at the physical point ∆0 to the phenomenological values
given in Table 1. We furthermore set Br

20(λ )SSE = 0 and use λ = mπ . A comparison of our data
and the resulting fit is shown in Fig. 3.

The raw lattice data is significantly smaller than the experimental value. The fit to the HBχPT
expression suggests that this might be due to significant finite size effects and a rather strong quark
mass dependence in the range 0 < mPS . 300MeV. gA(mPS = mπ) is found to be smaller than the

1Results for non-zero momentum have been presented by W. Schroers at this conference [4].
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Figure 3: Lattice results for gA together with a fit to an expression obtained from HBχPT. The filled symbols
show the lattice results after finite size effects have been corrected.

experimental value, which is however not significant given the large statistical errors. The other fit
parameters are of natural size.

4. Moments of unpolarised structure functions

Finally, we consider the lowest moment of the unpolarised nucleon structure functions, 〈x〉=
Aq

2,0(0), where Aq
2,0 is the first moment of the PDF Hq(x,ξ ,Q2) at ξ = 0.2 This moment is deter-

mined from the matrix element

〈N(~p)|
[
uγ

{µ1
↔
Dµ2} u

]
|N(~p)〉= 2Aq

2,0 [pµ1 pµ2 ] . (4.1)

For O(a)-improvement of the operator we use the perturbative results obtained in [14], where we
inserted the boosted coupling constant (g∗)2 = g2/u4

0. The unknown improvement coefficients are
set to zero as the corresponding improvement operators turn out to be small. The renormalisation
is both scale and scheme dependent. We have calculated the renormalisation constant ∆Zlat

v2b(a),
which translates our lattice results into RGI, non-perturbatively using the RI’-MOM method. For
comparison with other results we have to convert our numbers to MS. The corresponding factor(

∆ZMS
O (µ = 2GeV)

)−1
is calculated perturbatively using ΛMS = 261(17)(26)MeV [13].

The lattice results for 〈x〉 in the iso-vector case have been found to be significantly larger than
the experimental value. It had been suggested that this quantity may become much smaller at very
light quark masses [15]. This has been confirmed by recent calculations in the framework of baryon
chiral perturbation theory (BχPT) [8].

We compare our lattice results with these calculations both in the iso-vector case (u−d) and
the iso-scalar case (u+d). Note that the latter might be affected by contributions from disconnected
terms which we have not calculated so far. In our fits we use phenomenological input for the pion
decay constant F0, the nucleon mass M0 and the nucleon axial coupling gA,0 as listed in Table 1.

2Results for Aq
2,0 at Q2 > 0 have been presented by M. Ohtani at this conference [12].
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Figure 4: The left plot shows our results for 〈x〉(u−d)(mPS) at β = 5.29 (the results for other values of
β are similar). The solid line denotes a fit to an ansatz obtained from BχPT [8]. The right plot shows
〈x〉(u−d)(mPS = mπ) as a function of the lattice spacing together with a fit to a constant.

As suggested in [8] we assume the coupling ∆a(u−d)
2,0 ' 〈∆x〉(u−d). We finally end up with two free

fit parameters, i.e. au−d
2,0 and c8(λ = 1GeV) as well as (au+d

2,0 ) and c9(λ = 1GeV) in the iso-vector
and iso-scalar case, respectively. With the statistical errors and the number of fit parameters being
sufficiently small we fit the data for different values of β separately restricting the fit range to
0 < mPS . 650MeV (see Fig. 4 and 5).

In the iso-vector case we still find little indication for 〈x〉(u−d)(mPS) becoming smaller for
mPS → mπ . Currently this is not in contradiction to the BχPT results since quark masses may
still be too large. Furthermore, results at light quark masses may be affected by finite size effects.
Within statistical errors the discretisation effects seem to be small. In the iso-scalar case we find
evidence for 〈x〉(u+d)(mPS) to become smaller at lighter quark masses. Our results for mPS = mπ

are close to the phenomenological value.

5. Conclusions

In this paper we presented recent progress in improving our control on the systematic errors
for various quantities in the baryon sector. Finite size effects were found to be small in the case
of the nucleon mass mN and large in the case of the nucleon axial coupling gA. Investigation of
such effects for the delta mass m∆ and the lowest moment of the unpolarised nucleon structure
functions 〈x〉 is still pending. For all quantities considered here discretisation effects seem to be
small, although it remains difficult to distinguish potential O(a2) effects from other systematic
errors. The largest uncertainties stem from the extrapolation of our results to the physical quark
masses. We utilised results obtained in χPT to perform these extrapolations. Although most of our
lattice simulations have been performed at quark masses outside the region where χPT is expected
to converge, our fit parameters turned out to be of natural size and consistent with what is expected
from phenomenology.

To get better control on the quark mass dependence, simulations at significantly lighter quark
mass are mandatory. Fortunately, with recent algorithmic improvements and even faster computers
becoming available exploring the quark mass region with mPS . 300MeV starts to become feasible.
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Figure 5: Same as Fig. 4 but for the iso-scalar case 〈x〉(u+d).
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