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1. Introduction

Signatures of bound-state formationfinite volumeare of main interest in this paper. In the
infinite volume, the bound state is well defined since there is no continuum state below threshold.
However, in a finite box on the lattice, all states have discrete energies. Even worse, the lowest
energy level of the elastic scattering state appears below threshold in the case if an interaction is
attractive between two particle$][ Therefore, there is an ambiguity to distinguish between the
shallow (near-threshold) bound state and the lowest scattering state in finite volume in this sense.

We may begin with a naive question: what is the legitimate definition of the shallow bound
state in the qguantum mechanics? In the scattering theory, poles Sfrttarix or the scattering
amplitude correspond to bound statks [t is also known that the appearance of Sieave bound
state is accompanied by an abrupt sign change oftlvave scattering lengtl2]. It is interpreted
that formation of one bound-state raises the phase shift at threshatd Dlgis particular feature
is generalized as Levinson’s theoref).[ Thus, it is interesting to consider how the formation
condition of bound states is implemented iadcher’s finite size method, which is proposed as a
general method for computing low-energy scattering phases of two particles in finite vdlume [

In this paper, we discuss bound-state formation on the basis ofithehkr’s phase-shift for-
mula and then present our proposal for identifying the shallow bound state in finite volume. To
exhibit the validity and efficiency of our proposal, we perform numerical studies of the positron-
ium spectroscopy in compact scalar QED model. In the Higgs phadélgfgauge dynamics, the
photon is massive. Then, massive photons give rise to the short-ranged interparticle force between
an electron and a positron, which is exponentially damped. In this model, we can control positro-
nium formation in variation with the strength of the interparticle force and then explore distinctive
signatures of the bound-state formation in finite volume. The contents of this paper are based on
our published work3].

2. Bound-state formation in Lischer’s formula

In quantum scattering theory, the formation condition of bound states is implemented as a
pole in theS-matrix or scattering amplitude. Here, an important question naturally arises as to how
bound-state formation is studied throughischer’s phase-shift formuld][ Intuitively, the pole

condition of theSmatrix; S= e?%(P) = %&ng: is expressed as

cotd(p) =1, (2.2)

which is satisfied ap® = —y? where positive reay represents the binding momentum. In fact, as
we will discuss in the following, such a condition is fulfilled only in the infinite volume. However
the finite-volume corrections on this pole condition are exponentially suppressed by the size of
spatial extent..

It was shown by Lischer that th&wave phase shiféy can be calculated by measuring the
relative momentum of two particlgsin a finite boxL2 with a spatial sizé through the relation

B2 /2
tando(p) = D%O(l\’/éz) at g=Lpn/2m, (2.2)
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where the generalized zeta functi@fo(s, ¢?) = ﬁznezs(nz —¢?)~Sis defined through analytic
continuation insfrom the regiors > 3/2to s= 1 [1]. For negativeg?, an exponentially convergent
expression of the zeta functia?po(s, g°) has been derived in ReH][ Fors= 1, itis given by

7T1/2 202

Zoo(1,P) = -2/ — R + — e oan® (2.3)
nezzs 2v/n2

wherez;1623 means the summation withoot= (0,0,0). We now insert Eq.4.3) into Eq. 2.2) and

then obtain the following formula, which is mathematically equivalent to [E&) for negatives?:

1 / 1 — 27T
cotd(p) =i+ 7 nZZ3 \/We
The second term in the r.h.s. of E&.4) vanishes in the limit of? — —oo. It clearly indicates
that negative infinitg? is responsible for the bound-state formation. Therefore, in this limit, the
relative momentum squargd approaches-y?, which must be non-zero. Meanwhile, the negative
infinite g? turns out to be the infinite volume limit.

According to the original paped], for negativeg?, we introduce the phasa(k), which is
defined by an analytic continuation &f into the complexp plane through the relatictlanop (k) =
—itandy(p), wherek = —ip. As a result, the bound-state pole condition in the infinite volume
readscotoy(y) = —1 for the binding momentury [1]. Then, Eq.2.4) can be rewritten in terms of
the phasery as

—gn? (2.4)

LiinyCOtdo(K) -1+ Zl }L e VVLy — 1+L6y[eLy+ ﬁ(e*\@Ly) , (2.5)
where the factoN, is the number of integer vectons= Z3 with v = n2. Therefore, it is found that
although a bound-state pole condition is fulfilled only in the infinite volume limit, its modification

by finite size corrections is exponentially suppressed by the spatial éxireatfinite boxL3 7. We

can learn from Eq/24.5) that “shallow bound states” are supposed to receive larger finite volume
corrections than those of “tightly bound states” since the expansion parameter is scaled by the
binding momentuny.

3. Novel view from Levinson’s theorem

If the Swave scattering lengthy, which is defined throughg = lim_.otand(p)/p, is suffi-
ciently smaller than the spatial sizgone can make a Taylor expansion of the phase-shift formula
(2.2) aroundg® = 0, and then obtain the asymptotic solution of E2.2{. Under the condition
p? < u? wherepu represents the reduced mass of two particles, the solution is given by

. 2m ao ap) 2 6
BE~ T [1+c1|_ +c2(|_) %@’(L ), 3.1)

which corresponds to the energy shift of the lowest scattering state from the threshold energy. The
coefficients are; = —2.837297andc; = 6.375183[1]. An important message is received from

TAlthough it was pointed out how the bound-state pole condition could be implemented in his phase-shift formula
in the original paper1], this important fact has been firstly reported in R8J. [
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Eq. 3.1). The lowest energy level of the elastic scattering state appears below threSBcidQ)

on the lattice if an interaction is weakly attractivag (> 0) between two particles. This point makes

it difficult to distinguish between near-threshold bound states and scattering states on the lattice.
Here, a crucial question arises: once hwave bound states are formed, what is the fate of

the lowestS-wave scattering state? The answer to this question might provide a hint to resolve

our main issue of how to distinguish between “shallow bound states” and scattering states. A

naive expectation from Levinson’s theorem in quantum mechanics is that the energy shift relative

to a threshold turns out to be opposite in comparison to the case where there is no bound state.

Levinson’s theorem relates the elastic scattering phase &hiftr the |-th partial wave at zero

relative momentum to the total number of bound stakg¢y i a beautiful relatiord (0) = N, m'.

Therefore, if anSwave bound state is formed in a given channel, $hgave scattering phase

shift should always be positive at low energies. This positiveness of the scattering phase shift

is consistent with a consequence of the attractive interaction. Converselwhee scattering

length may become negativay(< 0), especially for the shallow bound-stat2 [Consequently,

according to Eq/3.1), possible negativeness of the scattering length gives rise to a positive energy-

shift of the lowest scattering state relative to the threshold energy. In other words, the lowest

scattering state is pulled up into the regaiyove thresholdTherefore, the spectra of the scattering

states quiteesembles the one in the case of the repulsive interactidrwere true, we can observe

a significant difference in spectra above the threshold between the two systems: one has at least

one bound state (bound system) and the other has no bound state (unbound system).

4. Numerical results

To explore signatures of bound-state formation on the lattice, we consider a bound state
(positronium) between an electron and a positron in the compact QED with scalar i8patter [

SsqeplU, P, W] = [1— D{UXW}] —h Z O{ DUy Py} + Z ¢XDW[U]X,y\Py, 4.1
lin

plag sites

whereB = 1/€? and the constraintby| = 1 is imposed. This action is described by the compact
U (1) gauge theory coupled to both scalar matter (Higgs) figldsd fermion (electron) fields.
In this study, we treat the fermion fields in the quenched approximation.

Our purpose is to study tH&@wave bound state and scattering states throuiggcther’s finite
size method, which is only applied to the short-ranged interaction case. Thus, fve-f%0 and
h = 0.6 for the compacU (1)-Higgs action to simulate the Higgs phased.fl) gauge dynamics,
where massive photons give rise to the short-ranged interparticle force between an electron and
a positron. We generaté(1) gauge configurations with a parameter $@t,h) = (2.0,0.6), on
L3 x 32 lattices with several spatial sizds= 12,16, 20, 24,28 and 32. Details of our simulations
are found in Ref. [3].

Once the parameters of the compbktl)-Higgs part,(B3,h), are fixed, the strength of an
interparticle force between electrons should be frozen on given gauge configurations. However,
if we consider the fictitiou®-charged electron, the interparticle force can be controlled by this

TStrictly speaking, this form is only valid unless zero-energy resonances exist.
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Figure 1: The effective mass plots for each eigenvalue of the transfer matrix tfSgr@hannel on the lattice
with L = 28. Full circles, squares and diamonds represent the ground state, the first excited state and the
second excited state. The left (right) panel is@p& 3 (Q = 4).

chargeQ since the interparticle force is proportional to (cha@g. Within the quenched ap-
proximation, this trick of theQ-charged electron is easily implemented by replading) link
fields asUy , — USH = Flinluw into the Wilson-Dirac matrix3]. According to our previous
pilot study B], numerical simulations are performed with two parameter sets for fermion (electron)
fields, (Q,k)=(3, 0.1639) and (4, 0.2222). As we will see later, the former c@se () corre-
sponds tahe unbound systemwhile the latter casej = 4) corresponds tthe bound systemhere
the positronium state can be formed. Herevhich is the hopping parameter of the Wilson-Dirac
matrix, is adjusted to yield almost the same electron maddses 0.5 for both charges.

We are especially interested in th& and®S; states of the et system, where the electron-
positron bound state (positronium) could be formed even in the Higgs pkasand®S, positro-
niums are described by the bilinear pseudo-scalar opetigigi¥x and vector operatoixy, Wx
respectively. Therefore, we may construct the four-point functions of electron-positron states
based on the above operators. We are interested in not only the lowest level of two-particle
spectra, but also the 2nd and 3rd lowest levels. In order to extract a few low-lying energy lev-
els of two-particle system, we utilize the diagonalization methifjd We consider three types
of operators for this purposep(t) = L33, W(x,t)FW(x,t), Qw(t) = L0 3,, ¥(y,t)r¥(x,t)
andQu(t) = L85, , W(y,t)rW(x,t)ePr*Y) wherep; = #7(1,0,0) andl" = ys () for the'S
(3S)) e et state. We construct th@ x 3 matrix correlator from above three operat@gs(t) =
(O\Qi(t)Q}’(O)\O> and then employ a diagonalization of a transfer matrix. As shown iniFige
diagonalization method with our chosen three operators successfully separates the first excited state
and the second excited state from the ground <Bjte |

4.1 Sign of energy shift

In Figs.2, we show energies of the ground state and also excited statesanghsystem as a
function of spatial lattice size. The dashed lines and curves represent the threshold en2klies
and2E¢(p1), which are evaluated by measured energies of the single electron with zero momentum
Po = ZT"(O, 0,0) and nonzero lowest momenta = ZT”(l, 0,0) respectively. Two left panels are for
the'S, channels, while the right panel is for tA8; channel.
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Figure 2: Energies of the ground state and excited states ih$éhe left and middle panels) ai§; (the
right panel) channels of the"e™ system as functions of spatial lattice size. The left figure isJer 3,
while the middle and right panels are fQr= 4.

Let us focus on results in th& channel. The energy level of the ground state@o 3 in
the left panel appears close to the threshold. An upward tendency bfdhpendence toward the
threshold energy is observed as spatial &izecreases. This is consistent with a behavior of the
lowest scattering state predicted by E8.1f for the weakly attractive interaction without bound
states. On the other hand, we clearly see the presence of a bound s@te fhrwhich certainly
remains finite energy gap from the threshold even in the infinite-volume limit. The most striking
feature is our observeld-dependence of the energy level of the second lowest stat&fer4).
Clearly, this energy level approach the threshold enégy above The energy shift vanishes as
the spatial sizé& increases. Therefore, the second lowest energy state must be the lowest scattering
state with therepulsivelikescattering lengthgp < 0). In addition, the level of the second lowest
scattering state are located near and below (above) the threshold 2&gfy) for Q =3 (Q = 4).

In the'S channel forQ = 4, the binding energ$ is rather large aB ~ Me/2. The observed
bound state should be a “tightly bound state” rather than a “shallow bound state”. On the other
hand, we observe that the bound state irfiechannel (the right panel) is much near the threshold
energy. Although théS; ground state lies too close to the threshold energy to be assured of bound-
state formation, the distinctive signature of bound state is given by an information of the excited
state spectra. The second lowest state appears just above the first theddhdidt far from the
second threshol@E(p;). Therefore, we can conclude: t® ground state should be the shallow
bound state, of which formation clearly induces the sign of the scattering length to ci8hnge [

4.2 Bound-state pole condition

A rigorous way to test for bound-state formation would be to use an asymptotic formula for
finite volume correction to the pole condition as E&.5{. In Figs3, we plot the value ototoy
versus the spatial lattice extehtfor either'Sy (left) and3S; (right) channels. Full circles are
measured value at five different lattice volumes. At first glance, we observe that thecobhase
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Figure 3: cotap in thelS, (left) and3S; (right) channel forQ = 4 as a function of the spatial lattice sikze

gradually approachesl as spatial lattice extehtincreases for either channels.

We next examine thie-dependence afotag by reference to Eq2(5), where the finite volume
corrections on the bound-state pole condition are theoretically predicted. The solid and dashed
curves represent fit results with a single leading exponential term and three (six) exponential terms
in the'S (3S;) channel. All five data points are used for those fits in‘tgchannel, while the
four data points in the regioR0 < L < 32 are used in théS; channel. The fitting with the three
(six) exponential terms yields a convergent resuly of the 1S (3S;) channel. Either fit curves in
Figs.3'reproduce all data points except for data at the smdllasthe®S; channel. Therefore, we
confirm that the ground state in tA&; channel at least far > 20 can be identified as a shallow
bound state without ambiguity.

5. Summary and conclusion

In this paper, we have discussed formation of an S-wave bound-state in finite volume on the
basis of lilscher's phase-shift formula. We have first showed that although a bound-state pole
condition is fulfilled only in the infinite volume limit, its modification by the finite size corrections
is exponentially suppressed by the spatial exteinta finite boxL3. We have also confirmed that
the appearance of the S-wave bound state is accompanied by an abrupt sign change of the S-wave
scattering length even in finite volume through numerical simulations. This distinctive behavior
may help us to discriminate the shallow bound state from the lowest energy level of the scattering
state in finite volume simulations.
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