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1. Introduction and motivation

QCD with one flavor of quarkd\; = 1 QCD) radically differs from QCD with two or more
flavors due to the absence of a chiral symmetry: the abelian symmetry of ¢hitawor theory
is washed out at the quantum level by the Adler-Bell-Jackiw anomaly. Ombctor symmetry
survives, related to the conservation of the quark number. As a comiseg of this, the main
features of the phase structure and mass spectrum of the single flamgr shengly deviate from
the familiar picture, affected by the spontaneous breaking of the ndiaalmhiral symmetry, of
ordinary QCD. These unphysical featuresNgf= 1 QCD explain the little attention reserved to
this kind of setup in past simulations (however with the exceptions of [1] ajd [2

This situation has changed in recent years, mainly due to the works ofédtLdrawing the
attention of the lattice community to open problems in the physialx 1) theory [3, 4]. Since
these aspects are not directly related to the spontaneous breaking birghaymmetry, they find
an equivalent in the single flavor theory. The latter represents therafsimple setup for their
investigation.

One question raised by Creutz [3], having a relevant phenomenoldgipatt, is whether it
is possible to define in an unambiguous way the case widregquark (say thes quark) becomes
massless. The arguments against an unique definition of the massless lings¢8lially rest
upon theU (1) anomaly and should therefore hadortiori for the one flavor theory. A second
aspect is the possibility of a spontaneous breaking of CP in QCD for $pbciges of the quark
masses, conjectured for the first time by Dashen [5]. According to thee Watten theorem [6] a
prerequisite for the spontaneous breaking of a discrete symmetry is @sitimg@fermion measure,
which inNs =1 QCD is possible for negative quark masses. The transition line is indpedtexi
to be located [7] on the negative real quark mass axis in the extended cgmapéneter space. In
the case of the multi-flavor theory, the transition is excluded for physidaésaf the quark mass,
but its nearby presence can nevertheless affect numerical simulatidims kattice [4]. So the main
features of this transition are not of academic interest only.

Another intriguing aspect of one flavor QCD, emerging from string thesrihe connection
with the #'=1 supersymmetric Yang-Mills theory (SYM). The equivalence of the tworiks in
the bosonic sector [8] can be proven at the planar level of a particutgr Na limit (orientifold
large N; limit) preserving balance between fermionic and bosonic degrees ofoireedRelics
of SUSY are therefore expected My = 1 QCD (with N; = 3). A prediction of the orientifold
equivalence [9], already studied in the literature [2], concerns in pdatiche size of the quark
condensate.

Another important place where relics of SUSYNn = 1 QCD can be investigated, considered
in more detail in this contribution, is the low-lying bound-state spectrum [10]5YM the mass
patterns are strongly constrained by SUSY. In particular low-energyeladdll] predict a low-
lying chiral supermultiplet including two scalar particles with opposite paritg. Ny = 1 QCD
these two particles can be easily identified with thand theo meson (the former picking up
a mass through the anomaly). On the basis of the planar equivalence, tissiratia including
O(1/N;) corrections is expected to Io& /m, = Nc/(Nc — 2) [14].

1For recent lattice simulations of'=1 SYM, see [12, 13].
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The study of the mass spectrum of hadronic states requires reasomgblghgsical volumes,
in order to be able to accommodate the bound-states in the finite box, and sos#iv§) quark
masses. High statistics is required for a precise determination of the distediggiark diagrams
needed for the scalar meson masses, which are characterized by avblgif loise. High statis-
tics is also important for the computation of the glueball masses. We apply leevéildon lattice
fermion action which has recently been shown [15, 16, 17, 18] to be witidsfor such an in-
vestigation. Preliminary results with Stout-smeared links [19] in the Wilson fermadion will
be also presented. Following [18] we apply in the gauge sector the trdengweved Symanzik
action (tISym).

The present exploratory study has been performed 8r2#2and 18- 32 lattices with a lattice
spacing corresponding in QCD units &0~ 0.19fm anda ~ 0.13fm, respectively. (We use the
Sommer parameter [20} for setting the scale, fixed at the conventional vaiye= 0.5fm.) For
the future we plan to run simulations closer to the continuum limit.

As already mentioned, the sign of the quark determinant is an important isiigedri QCD
(in particular, a negative determinant triggers the CP-violating phasetitoasin the continuum,
the fermion determinant is positive for positive quark mass. With Wilson latticeiéms for small
guark masses, it can become negative due to quantum fluctuations. Infroastsimulations the
guark mass is large enough to prevent sign changes and the oceurfengegative determinant is
arare event. For the lightest simulated quark masses however the sigmgoatkaleterminant may
potentially play a role and its impact in the hadron spectrum must be cheakedr simulations
we could reach quite small quark masses dowmda~ 12MeV (myro ~ 0.03), corresponding to a
pion massn;; ~ 270 MeV.

As we have argued in [10], itis useful to embed the= 1 QCD theory in gartially quenched
theory with additional quark flavors. A particularly symmetric choice congistaking the {\y)
valencequark flavors degenerate with tkeaquark: in this case the combined sea and valence
sector is characterized by an exact(80-+ 1) flavor symmetry. In this fictitious multi-flavor theory
a PCAC quark mass can be naturally defined. We take this quantity as atiepdefinition of the
guark mass for the (unitary) one-flavor theory. Also, a partially queddhiral perturbation theory
(PQChHhPT) can be set-up, exactly as inMye> 1 case. The latter reduces to an effective theory of
thenn meson in the unitary sector without valence quarks. The predictions of @&hPT will be
compared against our numerical data.

The plan of this contribution is as follows: in the next section the partially dussheiewpoint
is introduced and PQChHhPT is considered for it. In Section 3 some informatidineosimulation
algorithm and on the computation of the sign of the determinant are given. $dcisodevoted
to the presentation of our numerical results on the hadron spectrum, whtiersg discusses the
partially quenched data. The last section contains summary and outlook.

2. Partially quenched QCD

The symmetry of the one flavor theory can be artificially enhanced by addiing valence
quarks which arguuenchednamely not taken into account in the Boltzmann-weight of the gauge
configurations by their fermion determinants. A theoretical description ofdbelting partially
guenched theory can be obtained through the introduction of ghostgjidr. In this method the
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functional integral over the ghost quark fieldscancels the fermion determinant of the valence
quarksy,

/.@A.@[L/JSUJ_S] 2[4 ] 2] e~ S0 Ws(YuDpu-+ms) Ws— By (Vu Dy +mv )y —B(yu Dy +mv )

—/.@A _s, det(yuDy+my)
detyuDy +my)

and only the determinant of the s&8 Quark remains in the measure. In principle, one might
consider any number of quenched valence quarks with any mass vhalums. approach we take
two valence quarkas andd with massesn, and one sea quarkwith massms. For our purpose
the case of degenerate valence and sea quark myassmg is particularly convenient (which is
admittedly an unconventional kind of partially quenching). Observe thatisnsgrmmetric setup
the exact number of valence quatkg is immaterial, so our positiohlr = Ny +Nf =2+ 1 is
just suggested by analogy with the case realized in nature. (Of coum@lento be able to build
bound states containing two different quark flavors as mesons andnsctine needsy > 1.)

At the point of vanishing quark masses (see below) the generic partialycted theory has
a graded SN |Ny)L ® SU(Ng|Ny)r symmetry, which is broken spontaneously into a “flavor”
symmetry SUNg|Ny ), also valid for non-vanishing degenerate quark masses. THiBS$ub-
group represents the flavor symmetry in the combined sea and valenéesgators. The latter
symmetry implies that the hadronic bound states appear in exactly degend(dke) gultiplets
formy = ms.

In particular, this extended theory contains a degenerate octet ofqexalar mesons (“pions”
m,a=1,...,8) satisfying an S(B)-symmetric PCAC relation. Considering the divergence of the
axial-vector current?, and pseudoscalar densR{ we can define the bafeCAC quark mas#
lattice units as usual

(GiAWR )

2(Rf R > '
Here the indices- and— refer to the “charged” components correspondingde-iAp (with Az p
some off-diagonal Gell-Mann matrices) agigldenotes the backward lattice derivative. Due to the
exact SU(3)-symmetry, the renormalized quark mass correspondingtocan be defined by an
SU(3)-symmetric multiplicative renormalization:

det(y,Dy +ms), (2.1)

ANMbeac = (2.2)

Meeac = mPCAc (2.3)

As we will confirm numerically in sec. 5, the masses of the “pions” can be rt@adanish
by suitably tuning the bare quark mass on the lattice. In this situation the rencethajimrk
mass (2.3) vanishes, too. We stress here that the pions are not partitiespimysical spectrum
of the theory. Nevertheless their properties as mass and decay carstargll defined quantities
which can be computed on the lattice. The same applies for the PCAC quarkfgsshich can
be therefore regarded as a potential candidate for a definition of thk iopaes in this theory.

2.1 Chiral perturbation theory

The dependence of pion properties upon the quark masses can bmidetkin partially
guenched chiral perturbation theory (PQChPT) [22, 23]. The eitthe finite lattice spacing
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a can be also included [24, 25, 26, 27, 28]. The pseudo-Goldstons fiekdparameterized by a
graded matrix

U (X) :exp(%d)(x)) , (2.4)

which in our case is in the supergroup @2). (The normalization ofy is chosen such that its
phenomenological value is 86 MeV.) The commuting elements of the graded matrisepresent
the pseudo-Goldstone bosons made from a quark and an anti-quarlqwéhsgatistics, while the
anticommuting elements represent pseudo-Goldstone fermions which arfedsaitine fermionic
quark and one bosonic quark. The supertrac® bfas to vanish, which can be implemented by a
suitable choice of generators [29].

We have calculated both the masses and decay constants of the psddstoiigobosons in
next-to-leading order of partially quenched chiral perturbation thelaygathe lines of Ref. [29],
including &'(a) lattice artifacts [26]. The quark masses enter the expressions in the coiotsna

Xv = 28Orn\/ , Xs= ZB0 Ms,  Xecac = ZB0 rnECAC (2'5)

with the usual leading order low-energy constBgitthe lattice spacing enters in the combination
p= ZWOaa (26)

whereWp is another, lattice-specific, low-energy constant. We have calculated theemaf the
pions and mixed mesons (degenerate in the specialroase mg). The next-to-leading-order
expression in terms of the (renormalized) PCAC quark mass is

Xéosc 1 Xecrc | 8 2
167‘[2[:02 I N2 + F_Oz (2L8 —Ls+2Le— L4)XPCAC

+ (W +Ws —W5s —Wj —2Lg+Ls —2Lg+ L4)XPCACP:| , (2.7)

m% = Xpcac +

where the usual next-to-leading order low-energy paramétesppear, together with additional
ones YM) describing lattice artifacts. For the decay constant we obtain in this case

Fr=Fo- {1_ 3)2(;[02‘\;02 In X/P\CZAC 4 FEOZ [(L5 +L4) Xpcac+ (Ws +Wj — Ls — L4)p] } . (2.8)
Observe that as expected the results are independdt.ofn particular, calculating the quan-
tities in this model withNy = 1, which corresponds to a representation the supergroyg|s\)
reproduces (2.7) and (2.8).

The analysis can be extended by relating the pion mass to the mass of thedghys The
inclusion of the singlet can be achieved by relaxing the constraint ofishiag supertrace [22, 29],
and associating it with the field

®p(X) = STrd(x). (2.9)

The effective Lagrangian then contains additional terms dependidgon

AZL = adyPodyPo+ MG D5+ (DY), (2.10)
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wherea andmyg are free parameters in this context. We will use in the following the leading orde
expression for the mass of tige which reads

- ”%3+XPCAC
my = i (2.11)

Our numerical results fan, allow to determinexr andmg, (see Section 5).

3. Simulation

For the SU(3) gauge sector we apply the tree-level improved Symanzikn(}I&gtion [30]
including planar rectanguldd x 2) Wilson loops:

4 4
%:BZ(CO > {1—%ReU}jvl}+cl > {1—%Reuxlgvz}> : (3.1)
X u<v; u,v=1 UFAV; U,v=1

with ¢; = —1/12 and normalization conditiozy = 1— 8c;. The fermionic part of the lattice action
is the simple (unimproved) Wilson action. With the goal of improving the stability oiMloate
Carlo evolution at small quark masses, we also started simulations with Stouteshtia&s [19]
in the hopping matrix (see below).

The update algorithm is a Polynomial Hybrid Monte Carlo algorithm (PHMC) 821 allow-
ing the simulation of an odd number of fermion species. The present vdB&3bpis based on a
two-step polynomial approximation of the inverse fermion matrix with stochastrection in the
update chain: aequencef PHMC trajectories is followed by a Metropolis accept-reject step with
a higher precision polynomial. The polynomial approximation scheme and ttieastic correc-
tion in the update chain are taken over from the two-step multi-boson algoritfitefo[34]. A
correction factoC[U] in the measurement is associated with configurations for which eigenvalues
of the (squared Hermitian) fermion mati@[U] lie outside the validity interval of the polynomial
approximation. We refer to [10] for more details on the algorithmic setup.

As mentioned in the Introduction, the signU| of the fermion determinant dg{U] has also
to be included in the reweighting of the configurations. The expectation whlaeuantityA is
therefore given by
J1dU] o[U]C[U]AlU]

JldU]o[U]C[U]

For the computation of the signU] we applied two methods. In the first we studied $pec-
tral flow of the Hermitian fermion matrix [35]. For the-dependent computation of the low-lying
eigenvalues of the Hermitian fermion matf{U | we followed in this case Ref. [36]. Alternatively,
we computed the (complex) spectrum of the non-Hermitian matrix concentratitingdowest real
eigenvalues: sign changes are signaled by negative real eigenvalizeapplied the ARPACK
Arnoldi routines [37] on a transformed Dirac operator. The (polynontialsformation was tuned
such that the real eigenvalues were projected outside the ellipsoidal dni#iing the whole
eigenvalue spectrum [38]. This allows for an efficient computation of ¢la¢ eigenvalues [39].
This latter method, on which we will rely in the future, delivers unambiguossltge and can be
simply automatized.

(A) = (3.2)
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Table 1: Summary of the runs: £224 and 18- 32 lattices have lowercase and uppercase labels, respec-
tively. The bar indicates runs with Stout-link in the fermiaction (see text).

B K Neonf plaguette Tplag ro/a
a | 3.80| 0.1700| 5424 | 0.546041(66) 12.5 | 2.66(4)
b | 3.80| 0.1705| 3403 | 0.546881(46) 4.6 | 2.67(5)
c | 3.80| 0.1710| 2884 | 0.547840(67) 7.6 | 2.69(5)
A | 4.00| 0.1600| 1201 | 0.581427(36) 4.3 | 3.56(5)
B | 4.00| 0.1610| 1035 | 0.582273(36) 4.1 | 3.61(5)
C | 4.00| 0.1615| 1005 | 0.582781(32) 3.3 | 3.73(5)
A | 4.00| 0.1440| 5600 | 0.577978(23) 9.7 | 3.74(3)
B | 4.00| 0.1443| 5700 | 0.578167(28) 11.3 | 3.83(5)

3.1 Simulation details

We performed simulations on a 324 lattice with = 3.8 and on a 18- 32 with 8 = 4.0.
Information regarding the generated sets of configurations are rdporiable 1.

The sequences consisted of 3—-6 PHMC individual trajectories. Tluésjme of the first step
of polynomial approximations was tuned such that the acceptance of theCRFjéctories was
about 0.80-0.85. The same acceptance was required for the Metrogolis/teining the total
length of the trajectory (1.5-1.8). This resulted in a relatively high total@aoee of 0.64-0.72.
Optimization of the parameters of PHMC turned out to have a substantial imp#ut integrated
autocorrelation times of the average plaquette.

In the case of a Stout-link we consider one step of isotropic smearingoyith= p = 0.15,
u,v=1...,4. The Stout-smearing has in general the beneficial effect, comparezundmeared
action, of reducing the fluctuations of the smallest eigenvalue of the @djubermitian matrix,
with the result that less exceptional configurations are observed. [fdvged us to obtain smooth
simulations down to quite small pion masses~ 270 MeV.

Taking the values ofp/a at the highesk’s for the runs af3 = 3.8 and3 = 4.0 and fixing
ro = 0.5fm by definition we obtaim = 0.186 fm anda = 0.134 fm, respectively. The extensions of
the 12 and 16 lattices are roughly constant: = 2.23fm andL = 2.14fm. (The Stout-smearing
leavesrp/a essentially unchanged.)

For runsb, c, A andB there are cases where the eigenvalues of the fermion matrix are outside
the approximation intervak, A] and therefor€[U] # 1. In runcin particular there are 167 of such
configuration out of 2884, 26 of them with negative sign. Howevem éndhis case the average
value o[U]C[U] is very near to one: 0.9842. The effect of the correction factors toub$o be
quite weak in the case of the average plaquette amgl/af the effect on the average valuergfa
is only in the fifth digit (whereas the statistical error is in the third digit). This isthe case for
low energy quantities as the low-lying hadron masses (see in the following).
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Table 2: Results for light hadron masseshia = 1 QCD (the result with the asterisk has been obtained with
higher statistics: 4900). Note that the glueball masse® wbtained at small time separations and hence
could be overestimated (see also text).

amy

amy

anmp++

amp

0.462(13)

0.660(39)

0.777(11)

1.215(20)

0.403(11)

0.629(29)

0.685(10)

1.116(38)

0.398(28)

0.584(55)

0.842(16)

1.204(57)

0.455(17)

0.607(57)

1.083(79)

1.006(15)

0.380(18)

0.554(52)

1.032(66)

0.960(15)

O|m|>»|o|lc|lo

0.316(22)

0.613(67)

0.943(41)

0.876(26)

4. Hadron spectrum

4.1 Mesons

For the meson states we consider the simplest interpolating operators in tidegsdar and
scalar sectors:
4.1)
4.2)

P(x) = ()X ,
SX) = Y@ (x) -

Corresponding states in the QCD spectrum areitlie58) and fo(600) (or o). In the case of the
pseudoscalar mesons, invariance under the flavor group playsialspeewhen comparing with
QCD states because of the U(1) axial anomaly.

The disconnected diagrams of the hadron correlatorsafid o were computed by applying
stochastic sources with compl&x noise and spin dilution. The method was already applied to the
case of lattice SYM [13]. In order to optimize the computational load, alsoidensg autocor-
relations, we analyzed typically every fifth configuration, with 20 stocha&stitnates each. The
resulting statistics is 400 600 on the smaller lattice arrd 200 on the larger one.

no):
o(0"):

4.2 Baryons

The simplest interpolating field in the baryon sector containing just one dietatks

0i(X) = €andWa(X)" Cyitho(X)] () -
The low lying hadron state interpolated by the above operator is expectev¢ospin 32 and
positive parity(%+). This corresponds to tha™* (1232 of QCD if our dynamical fermion is
interpreted as an quark (theQ™ baryon is more appropriate for larger quark masses).
A difficulty arises since the Rarita-Schwinger spinor (4.3) also contaipgalg2 component.
We extract the wanted spin 3/2 component by projection [40]:

Goalt) = TN IGHDYN +GilD)] . Gil1) = 3 (A% VA(0))

(4.3)

(4.4)
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Figure 1: The mass of the lightest physical particles in one-flavor Q@B function of the bare PCAC
guark mass. The masses are multiplied by the scale pararpétesrder to obtain dimensionless quantities.

Since the baryon correlator does not contain disconnected diagramiullcgtatistics could be
taken for the computation of the masses in this case, namely 3000—4000 omatler $attice and
~ 1000 on the larger one.

4.3 Glueballs

Spin O states are also projected by purely gluonic operators. Thesesgghuéalls, a well
known object of investigation in lattice QCD. In particular the'Qglueball has the same quantum
numbers as the meson. In this first investigation we neglect possible mixings between the two
states and consider only diagonal correlators.

We used the single spatial plaguette to obtain the mass ofthg@und state. To increase the
overlap of the operator with this state we performed APE smearing [41]lsodpplied variational
methods [42] to obtain optimal glueball operators from linear combinationsedfdkic operators.

4.4 Results

The results for the hadron masses (only available for the runs without Steedring) are
reported in lattice units in Table 2. In Fig. 1 the hadron masses are plotteduast&h of the
bare PCAC quark mass.c.c (2.3) defined in the partially quenched picture. Since we use physical
units here, results from the two lattice spacings can be compared. Thegssadiatisfactory for
the case of}, whose mass could be computed with the best accuracy. The determinatii@oof
meson mass seems to require large statistics.

The effect of the sign of the determinant in the hadron spectrum wagigstsl by computing
the masses with or without the inclusion of the sign factor in the reweightingeduwe. Only in
the case of our run at the lightest quark mass gunsizeable effect can be observed: here the sign
of the determinant pushes up the masses byl @%.
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Table 3: The PCAC quark massecac, the pion mass,; and non-renormalized decay constéptand the
nucleon massa in lattice units (only for the runs without Stout-smearing)

aMbeac amy afy amy

a | 0.02771(45)| 0.3908(24)| 0.1838(11) | 1.0439(54)
b | 0.01951(39)| 0.3292(25)| 0.1730(15) | 0.956(27)
c | 0.0108(12) | 0.253(10) | 0.156(10) | 1.011(51)
A | 0.04290(36)| 0.4132(21)| 0.1449(9) | 0.9018(44)
B | 0.02561(31)| 0.3199(22)| 0.1289(10) | 0.7978(53)
C | 0.01700(30)| 0.2635(24)| 0.1188(12) | 0.734(10)
A | 0.01532(34)| 0.2316(49)| 0.09747(15)

B | 0.00886(75)| 0.1994(74)| 0.0852(49)

We observe that our statistics is not large enough to obtain an accuratetesiirtfze glue-
ball masses. In particular, the results reported in Table 2 could be tvesitsd. Indeed, due to
the high level of noise, large time-separations could not be included in teemdgations; it is
therefore possible that the latter are contaminated by excited states. inmetdance the statis-
tics we decided to store the gauge configuration more frequently (as veashalapplied for the

continuation of rurC).

5. Partially quenched analysis

The results for the partially quenched sector are collected in Table 3 amhsh Figure 2.
This also includes the nucleon mass (only for the runs without Stout-smgaring

The partially guenched ChPT formulae are used to extract the corisgdow-energy co-
efficients from the pion data. Considering the number of lattice data at oposdik a full fit
including all the terms in the ChPT formulae is not possible, so we take only tittnaam terms

into account. We fitted the data for bgBhvalues simultaneously neglecting the dependence of the
renormalizations factorgs andZp upon the lattice coupling constant. Introducing the one-flavor
low-energy constants

Nz = AnFoexp{64m?(Ls+ Ls — 2Lg — 2Lg)},

N4 = AriFoexp{64r(Ls+Ls)}, (5.1)
the fit formulae of the renormalized values reduce to
2
XPCAC XF’CAC
m72T XPCAC+ 167T2F02 /\% )
fR Xpcac Xpcac

- 1— . 5.2
Fov/2 322 A2 (5.2)

10
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Figure 2: The mass of the valence pion and nucleon as a function of fleeR2AC quark mass.

The data and the fitted curves are shown in Fig. 3.
In order to improve the numerical results for the universal low-eneogsi@nts\s 4, which
do not explicitly depend on the lattice spacimgve also performed fits to the ratios [43, 15]

M L (5.3)
m,znef ’ 1:7T,ref

For this calculation we restricted ourself to the datf at 4.0 with reference point at = 0.1615.
We obtain in this case the results

N3
— = 100+26, 54
Fo (5.4)
v
£ = 315+143, (5.5)

which, interestingly, are compatible with phenomenological values obtaiaeddrdinary QCD [44].
The errors are however quite large (we hope to improve these determiatithe future).

In addition, we investigated the relation between the mass of the pion and dfiybiead n,
reducing to formula (2.11) at leading-order. For this purpose we fittedltsimaouslym? andm?,
as a function of the PCAC quark mass, again considering @ri4.0. This yields to

a=-003(19), amp=0.18(8), (5.6)

suggesting a vanishing. Using the value ofy/a extrapolated to vanishing PCAC quark mass and
settinga = 0 we find
amp =0.19(2) or romy =0.72(10), (5.7)

which means
Mo = 284+ 40MeV (5.8)

11
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Figure 3: Pion masses squared and pion decay constants in latticeamnitthe results of the PQChPT fit.

in physical units.
The value ofmg can also be obtained from the Witten-Veneziano formula [45]

4AN;¢
mg = Trra Xt (5.9)
(f7)
valid at leading-order in the ('t Hooft) largd. limit. An estimate of the quenched topological
susceptibility present in the literaturexs= (193+ 9MeV)* [46]. Using our value forf}, which
is subject to a sizeable statistical error, one would obtain= 450+ 170 MeV.

6. Summary and outlook

This first Monte Carlo investigation ™ = 1 QCD reveals the qualitative features of the low
lying hadron spectrum of this theory. The lightest hadron is the psealdogcmeson (see Table 2
and Figure 1) while the scalar meson, thas about a factor 1.5 heavier. Itis interesting to compare
our data with the estimate in [4Th/m, ~ Nc/(N; — 2) = 3 for Nc = 3. The above prediction
applies for the massless theory and one could expect the agreement toarfgremnaller quark
masses. Our bare quark masses (estimated from the PCAC quark mass atetiw \analysis)
range between 10 MeV and 60 MeV, while the lightest pion mass230 MeV.

The lightest baryon, tha (g+), is by about a factor 3 heavier than theneson. The lightest
scalar mass obtained with a gluebafi"0operator lies between the meson and thé baryon
mass. However, this mass could be overestimated, since, due the highflaeidey only small
time-separations could be included in the analysis.

In general, the mass measurements have relatively large errors betwH#¥.3In order to
obtain more quantitative results, larger statistics and smaller quark masseguired. We hope
to be able to make progresses in both directions [48] with our new simulatiorgsSt®ut-smeared
links in the fermion action. Some preliminary results were already presentet icahitribution
(see [49] for a test of this formulation in twisted mass QCD with= 2).
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The introduction of a partially quenched extension of the single flavor yhedh valence
quarks allows to define the bare quark mass in terms of the PCAC quark nees factitious
multi-flavor theory. The computation of the bare quark mass is intricate in theyiti@ory due
to the absence of a chiral symmetry (the arguments of [3] regard the definftamrenormalized
guark mass). Comparison of lattice data with partially quenched chiral patioin theory allowed
the determination of some of the low-energy constants of the chiral Laigrandhe latter are
compatible, even if with large error, with recent lattice determinationdlfor 2 QCD.

A further direction of investigation for the future [48] is the CP-violating gharansition
expected at negative quark masses [7]. For this aspect of the singletfiaory the non-positivity
of the fermion measure plays an essential role.
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