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The MILC collaboration’s simulations with improved staggered quarks are being extended with

runs at a lattice spacing of 0.06 fm with quark masses down to one tenth the strange quark mass.

We give a brief introduction to these new simulations and thedetermination of the lattice spacing.

Then we combine these new runs with older results to study themasses of the nucleon and the

Ω− in the continuum and chiral limits.
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1. Introduction

In this work we update our determination of the lattice spacing in the MILC collaboration’s
program of QCD simulations usingNf = 2+ 1 flavors of dynamical staggered quarks with the
a2

tad action[1], and update our calculations of the nucleon andΩ− masses. Determining the lattice
spacing is central to any simulation program. We emphasize that the same lattice spacing determi-
nation, with the same uncertainties, affects everything computed from these lattices. The spectrum
of the light quark hadrons is an important test of a lattice QCD simulation, and is astandard part
of all large lattice QCD programs. Getting these well known masses right gives us confidence in
our ability to predict unknown masses and matrix elements. Both the nucleon andΩ− are stable
against strong decays and well known experimentally, and hence are good tests of our program.
Our previously published work on the light quark spectrum and lattice spacing determination is in
Refs. [2, 3].

We are now doing simulations with a smaller lattice spacing,a ≈ 0.06 fm, in addition to
lengthening some runs and adding runs at other quark masses at larger lattice spacing. The runs at
a≈ 0.06 fm are all still in progress, so all results reported here are preliminary. Table I shows the
simulation parameters for thea≈ 0.06 fm runs.

amq / ams 10/g2 size volume number a (fm) Algorithm

0.0072 / 0.018 7.48 483×144 (2.9 fm)3 555 0.060 R
0.0036 / 0.018 7.47 483×144 (2.9 fm)3 480 0.060 RHMD-1
0.0018 / 0.018 7.46 643×144 (3.8 fm)3 46 0.061 RHMD-4

Table 1: Lattice parameters. Lattice spacings come from the smoothed r1/a values andr1 = 0.318 fm.
“RHMD-n” is a RHMD algorithm usingn pseudofermion fields. Details of the algorithms will be given
elsewhere.

2. Finding the lattice spacing

The results of a lattice computation are in units of the lattice spacinga, so a determination
of a in physical units is essential. This requires taking some physical quantity (oraverage over
quantities) as a standard. At this time we are using theϒ mass splittings determined by the HPQCD
group[4]. A possible alternative isfπ , and we are investigating whether this would be better[5].
Becauseϒ mass splittings are not available on all of our ensembles and because the staticquark
potential can be accurately determined, we user1 defined byr2

1F(r1) = 1.0 [6, 7] as a quantity to
interpolate the lattice spacing, as described in Ref. [3]. Thus, theϒ splittings giver1 = 0.318(7)

fm , which is then used to determine the lattice spacing for all gauge couplings and quark masses.

Static quark potentials were calculated from correlators of time direction lines,with Coulomb
gauge fixing for the spatial connections[7]. As the lattice spacing decreases, determining the static
potential becomes more difficult because of the increasing constant term, corresponding to the sin-
gular self-energy of the static quark. Since the Wilson loop expectation value falls off exponentially
as〈W(R,T)〉 ≈ exp(−V(R)T), a larger constant inV(R) translates into an exponentially smaller
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expectation value ofW(R,T), and larger fractional statistical error. This can be alleviated, at the
cost of some spatial resolution, by smearing the time direction links in the lattice.

Figure 1a shows the static quark potential, with and without one iteration of APEsmearing
of the time direction links, while Fig. 1b shows the static quark potential atmq = 0.4ms for four
different lattice spacings.

Figure 1a: The static quark potential, with
and without APE smearing of the time di-
rection links. This is for theamq/ams =

0.0072/0.018 run. The constants in the po-
tential differ (that’s the point), so we added
0.27731 to the smeared potential to show the
agreement. (This shift forces the potentials to
agree atr1.)

Figure 1b: The static quark potential at
mq = 0.4ms for four different lattice spacings,
roughly a = 0.06, 0.09, 0.125 and 0.15 fm.
The a = 0.06 fm potential uses smearing of
the time links. The colored rulers nearV = 0
are in units of the corresponding lattice spac-
ings, while the “physical” ruler nearV = −2
is in units of 0.1 fm.

In Fig. 2b note the visible lattice artifact at the on-axis(2,0,0) point marked with↑!. The
spatial range used for ther1 determination ata≈ 0.06 fm was 4.01 to 7.01. Also note that the
a = 0.06 fm potential (red) atr = 0 (marked with←!) is much smaller in magnitude than if it
continued the trend, again showing the effect of the smearing.

To find r1 the potential was fit toV(r) = C+ A/r + Br for a range aroundr1. With a≈ 0.06
fm, lattice artifacts are unimportant in these distance ranges. Errors are from a jackknife analysis,
using a block size of 20 lattices, or 100 molecular dynamics time units. Figure 2a shows estimates
of r1/a from various spatial and temporal distance ranges without smearing, whileFig. 2b (right
half) shows fits with one iteration of APE smearing, including projection onto SU(3). The fits
shown in Figs. 2a and 2b (right) are from fitting the “Wilson loops” to a single exponential:V(r) =

log(W(r,T)/W(r,T +1)). We also do fits including an excited state of the potential. This gives less
dependence on fit range (smaller systematic error) but larger statistical errors. Ther1/a estimates
on the left side of Fig. 2b are from such two-state fits. Fitting this, together withour previous
results ata≈ 0.018, 0.015, 0.0125 and 0.09 fm, we get a “smoothedr1”, which is then used to set
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Figure 2a: Estimates ofr1/a from “loops”
with unsmeared time links. This is for the
amq/ams = 0.0072/0.018 run.

Figure 2b: Estimates ofr1/a from the same
run, with one iteration of APE smearing in-
cluding projection onto SU(3) for the time di-
rection links (right side). Fits including an ex-
cited state (left side). The arrow indicates the
point taken as our estimate.

the length scale for all ensembles.

3. Nucleon and Ω− masses

Both the nucleon and theΩ− are stable against strong decays, and so their masses should be
accessible in a straightforward way to lattice calculations. In principle the nucleon mass could
be used to determine the lattice spacing. In practice its correlators are noisy,and the non-trivial
chiral extrapolation makes an accurate determination difficult. TheΩ− has a very mild chiral
extrapolation — no terms with log(mπ) or m3

π at one loop order. Since it contains three valence
strange quarks, its mass is very sensitive to the strange quark mass. Therefore, theΩ− mass checks
our determination of the lattice strange quark mass from pseudoscalar physics.

Figure 3a shows the nucleon correlators from thea≈ 0.06 fm runs at 0.4ms and 0.2ms. Note
the expected difference in the slope, the alternating (opposite parity) signal at short distances,
and the increasing error bars at large distances. Figure 3b shows fits toone of these correlators
(mq≈ 0.2ms) as well as correlators for roughly the same light quark mass ata≈ 0.125 and 0.09 fm.
In this plot the size of the symbol is proportional to the confidence level of the fit, with the symbol
size used in the captions corresponding to 50%. From graphs like this we look for a plateau and
reasonable confidence level (χ2). The arrows in the graph indicate the fits that were chosen. Most
of the difference in the masses comes from the fact that the light quark masses in these three runs
were not exactly equivalent, and some comes from effects of lattice discreteness.

In Figure 4a we show nucleon masses fora≈ 0.0125 fm, 0.09 fm and 0.06 fm, where the three
colored arrows in Fig. 3b indicdate the fits that were chosen to include in this figure. The black
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error bar at the left is the experimental value. The error on this comes from the uncertainty inr1

(We use 0.318(7) fm). Another point ata≈ 0.06 fm atml ≈ 0.1ms ((mπ r1)
2≈ 0.12) is in progress.

Figure 3a: Nucleon correlators ata= 0.06 fm
for light quark masses 0.4ms and 0.2ms.

Figure 3b: Nucleon mass fits forml = 0.2ms.

Figure 4a: Nucleon masses (red blue and
green symbols), and fits to the nucleon mass
(cyan and magenta).

Figure 4b: The same, expanded to show the
small quark mass region. The points with
ml = 0.2ms are from the fits indicated with
arrows in Fig. 3b.

We show two forms for extrapolating the nucleon mass to the physical quark mass and contin-
uum limit. The first (cyan) includes only the lowest order nonanalytic correction, orderm3

π .

mNr1 = M0r1 +A1(mπ r1)
2 +B1a2α + r1

−3g2
A

32π f 2
π

m3
π (3.1)
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In these fits we just setfπ , gA andM∆−MN to their physical values. The cyan and magenta
symbols in Figs. 4a and 4b are the data points with the fitted lattice spacing corrections, B1a2α ,
subtracted,i.e. ata = 0, and the cyan and magenta lines are the fitting function ata = 0.

The second form (magenta)[8] includes the∆ without the assumption that∆ = M∆−MN >>

fπ . When Taylor expanded in powers ofmπ this includes terms up tom4
π , m4

π log(mπ).

mNr1 = M0r1+A1(mπ r1)
2+A2(mπ r1)

4+B1a2α +B2(mπ r1)
2a2α + r1

6g2
A

25π2 f 2
π

H(mπ ,M∆−MN,Λ)

(3.2)
where, ifmπ < ∆ = M∆−MN

H(mπ ,∆,Λ) = ∆3 log(2∆/mπ)+∆m2
π

(

3
2

log(mπ/Λ)−1

)

(3.3)

−
(

∆2−m2
π
)3/2

log

(

∆/mπ +
√

∆2/m2
π −1

)

−∆m2
π

(

3
2

log(2∆/Λ)−
3
4

)

if mπ > ∆

H(mπ ,∆,Λ) = ∆3 log(2∆/mπ)+∆m2
π

(

3
2

log(mπ/Λ)−1

)

(3.4)

−
(

m2
π −∆2)3/2

arccos(∆/mπ)−∆m2
π

(

3
2

log(2∆/Λ)−
3
4

)

Systematic errors have not been properly analyzed yet, and the data setis incomplete. With
these reservations, the orderm4

π chiral fit in Fig. 4 at the physical quark mass isMNr1 = 1.52±
.04± syst., or MN(MeV) = 942± 25± syst., where systematic errors onMNr1 must be at least
0.045, the difference between the two chiral fitting forms. We are also experimenting with chiral
extrapolations using fitting forms from partially quenched staggered chiralperturbation theory[9].

In fitting theΩ− mass the chiral extrapolation is simpler, but we must deal with its dependence
on the strange quark mass. Our lattice simulations were run with an estimate of the strange quark
mass and only after running the simulation cam we determine what the correct strange quark mass
is. Thus, we compute correlators at two valence strange quark masses, and then interpolate to the
valence strange quark mass determined from pseudoscalar mesons (basically MK). Figure 5a (like
figure 3b for the nucleon) shows fits to theΩ− correlators for runs at three different lattice spacings
with ml ≈ 0.2ms, again with arrows indicating the fit we chose. For the chiral and continuum
extrapolation we use a linear extrapolation inaml anda2α , which fits well withχ2/do f = 6.0/7.

MΩr1 = M0r1 +A(mπ r1)
2 +Ba2α (3.5)

Figure 5b shows theΩ− masses interpolated to the strange quark mass determined from pseu-
doscalar mesons as a function of light quark mass. It also shows the fit form above fora≈ 0.125,
0.09 and 0.06 fm, and in the continuum limit,i.e. with B set to zero. The black symbol is the
experimental value formΩr1, where the error is from the uncertainty inr1.

Errors on the extrapolated lattice result are statistical (0.7%), determination of ms from pseu-
doscalars (0.6%), and an estimate of neglected NNLO terms in chiral extrapolation (00.05). Other
small errors come from using the wrong strange sea quark mass, and the choice of procedure for

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
3
7

Baryon masses with a2
tad staggered quarks D. Toussaint

fixing strange quark mass. Using data available at conference time, the continuum and chiral ex-
trapolated value isMΩ ∗ r1 = 2.679+.025

−.056. Converting to physical units usingr1 = 0.318(7) and
adding errors, this isMΩ(MeV) = 1660+40

−50, where the experimental value is 1672 MeV.
This work is supported by the US Department of Energy and National Science Foundation.

Computations were done at the NSF Teragrid, NERSC, USQCD centers andcomputer centers at
the Universities of Arizona, Indiana, Utah and California at Santa Barbara.

Figure 5a:Ω− mass fits forml = 0.2ms. In
these plots the strange quark mass has not
been tuned to the correctms; it is one of the
masses at which correlators were computed.

Figure 5b: Ω− masses and fitting (see text).
The error on the experimental point is from
the error inr1.
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