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1. Introduction

In this work we update our determination of the lattice spacing in the MILC colilom’s
program of QCD simulations usinys = 2+ 1 flavors of dynamical staggered quarks with the
a2 4 action[}], and update our calculations of the nucleon @ndnasses. Determining the lattice
spacing is central to any simulation program. We emphasize that the same laditoggspetermi-
nation, with the same uncertainties, affects everything computed from thsedaThe spectrum
of the light quark hadrons is an important test of a lattice QCD simulation, andtanaard part
of all large lattice QCD programs. Getting these well known masses right giseonfidence in
our ability to predict unknown masses and matrix elements. Both the nucleo ame stable
against strong decays and well known experimentally, and hence acketgsts of our program.
Our previously published work on the light quark spectrum and latticeispatetermination is in
Refs. [2][8].

We are now doing simulations with a smaller lattice spacimgy 0.06 fm, in addition to
lengthening some runs and adding runs at other quark masses at l#igerspacing. The runs at
a~ 0.06 fm are all still in progress, so all results reported here are prelimifalyle | shows the
simulation parameters for theex~ 0.06 fm runs.

amy / ams 10/¢? size volume | number | a(fm) | Algorithm
0.0072/0.018| 7.48 | 48°x 144 | (29fm)3 555 | 0.060 R
0.0036/0.018| 7.47 | 48°x 144 | (29fm)3 480 | 0.060 | RHMD-1
0.0018/0.018| 7.46 | 64°x 144 | (3.8fm)° 46 | 0.061 | RHMD-4

Table 1. Lattice parameters. Lattice spacings come from the smdaty@ values and; = 0.318 fm.
“RHMD-n" is a RHMD algorithm usingh pseudofermion fields. Details of the algorithms will be give
elsewhere.

2. Finding the lattice spacing

The results of a lattice computation are in units of the lattice spaairsp a determination
of a in physical units is essential. This requires taking some physical quantigvésage over
gquantities) as a standard. At this time we are usingrth@ass splittings determined by the HPQCD
group[4]. A possible alternative if;, and we are investigating whether this would be bdtter[5].
BecauseY mass splittings are not available on all of our ensembles and because thejshakic
potential can be accurately determined, we iseefined byr?F (r1) = 1.0 [, [7] as a quantity to
interpolate the lattice spacing, as described in Rgf. [3]. Thusytsglittings giver; = 0.318(7)
fm , which is then used to determine the lattice spacing for all gauge coupliggLeark masses.

Static quark potentials were calculated from correlators of time direction livigs Coulomb
gauge fixing for the spatial connectiofjs[7]. As the lattice spacing deesedetermining the static
potential becomes more difficult because of the increasing constant m@spgonding to the sin-
gular self-energy of the static quark. Since the Wilson loop expectatioe fals off exponentially
as(W(R T)) =~ exp(—V(R)T), a larger constant iN (R) translates into an exponentially smaller
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expectation value olV(R, T), and larger fractional statistical error. This can be alleviated, at the
cost of some spatial resolution, by smearing the time direction links in the lattice.

Figure 1a shows the static quark potential, with and without one iteration of gkR&aring
of the time direction links, while Fig. 1b shows the static quark potentiafat 0.4ms for four

different lattice spacings.
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Figure 1a: The static quark potential, with
and without APE smearing of the time di-
rection links. This is for theamy/ams =
0.0072/0.018 run. The constants in the po-
tential differ (that's the point), so we added
0.27731 to the smeared potential to show the
agreement. (This shift forces the potentials to
agree at;.)

0: f=7.48, am=0.0072/0.018 -
& 0. p=7.11, am=0.0124,/0.031

O: =6.586, am=0.0194,/0.0484 |
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Figure 1b: The static quark potential at
my = 0.4ms for four different lattice spacings,
roughly a = 0.06, 009, 0125 and 015 fm.
The a = 0.06 fm potential uses smearing of
the time links. The colored rulers nedr= 0
are in units of the corresponding lattice spac-
ings, while the “physical” ruler nedar = —2
is in units of Q1 fm.

In Fig. @b note the visible lattice artifact at the on-a@0,0) point marked withf!. The
spatial range used for the determination af~ 0.06 fm was 4.01 to 7.01. Also note that the
a = 0.06 fm potential (red) at = 0 (marked with<!) is much smaller in magnitude than if it
continued the trend, again showing the effect of the smearing.

To find r; the potential was fit t&/ (r) = C+ A/r + Br for a range around;. With a= 0.06
fm, lattice artifacts are unimportant in these distance ranges. Errorsoanesfjackknife analysis,
using a block size of 20 lattices, or 100 molecular dynamics time units. Figutecd®esestimates
of r1/a from various spatial and temporal distance ranges without smearing, Rilgil@b (right
half) shows fits with one iteration of APE smearing, including projection ontg3%sUThe fits
shown in Figs. 2a and 2b (right) are from fitting the “Wilson loops” to a singf@eaential:V (r) =
log(W(r,T)/W(r,T+1)). We also do fits including an excited state of the potential. This gives less
dependence on fit range (smaller systematic error) but larger statigtioed.eTher;/a estimates
on the left side of Fig. 2b are from such two-state fits. Fitting this, together eithprevious
results ala ~ 0.018, 0015, Q0125 and M9 fm, we get a “smoothed”, which is then used to set
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Figure 2a: Estimates af;/a from “loops”
with unsmeared time links. This is for the
amy/ams = 0.0072/0.018 run.
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Figure 2b: Estimates af;/a from the same
run, with one iteration of APE smearing in-
cluding projection onto SU(3) for the time di-

rection links (right side). Fits including an ex-
cited state (left side). The arrow indicates the
point taken as our estimate.

the length scale for all ensembles.

3. Nucleon and Q— masses

Both the nucleon and th@ ™ are stable against strong decays, and so their masses should be
accessible in a straightforward way to lattice calculations. In principle théeananass could
be used to determine the lattice spacing. In practice its correlators are anisyhe non-trivial
chiral extrapolation makes an accurate determination difficult. {hehas a very mild chiral
extrapolation — no terms with Idgn,;) or m2. at one loop order. Since it contains three valence
strange quarks, its mass is very sensitive to the strange quark massforéetheQ ™ mass checks
our determination of the lattice strange quark mass from pseudoscalacghys

Figure 3a shows the nucleon correlators fromdtre 0.06 fm runs at ®m; and 02ms. Note
the expected difference in the slope, the alternating (opposite parity)l figishort distances,
and the increasing error bars at large distances. Figure 3b shows dite tof these correlators
(mg ~ 0.2ms) as well as correlators for roughly the same light quark maasa.125 and (09 fm.
In this plot the size of the symbol is proportional to the confidence leveleofithwith the symbol
size used in the captions corresponding to 50%. From graphs like this wddoa plateau and
reasonable confidence levgl¥). The arrows in the graph indicate the fits that were chosen. Most
of the difference in the masses comes from the fact that the light quarlemasthese three runs
were not exactly equivalent, and some comes from effects of lattice thaess.

In Figure 4a we show nucleon massesder 0.0125 fm, 009 fm and 006 fm, where the three
colored arrows in Fig. 3b indicdate the fits that were chosen to include in thisefi The black
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error bar at the left is the experimental value. The error on this comestine uncertainty i
(We use 0818(7) fm). Another point afi~ 0.06 fm atm = 0.1ms ((myr1)? ~ 0.12) is in progress.
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Figure 3a: Nucleon correlatorsat 0.06 fm

for light quark masses.@ms and 02ms.
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Figure 4a: Nucleon masses (red blue and
green symbols), and fits to the nucleon mass
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Figure 3b: Nucleon mass fits fan = 0.2m.
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Figure 4b: The same, expanded to show the
small quark mass region. The points with
m = 0.2mg are from the fits indicated with
arrows in Fig. 3b.

We show two forms for extrapolating the nucleon mass to the physical quak amal contin-
uum limit. The first (cyan) includes only the lowest order nonanalytic otiwa, ordemn.

M1 = Mor1 + A (mpr1)2 4 Bia2a 414

gAm3

3omf2 (3.1)
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In these fits we just seft;, ga andMa — My to their physical values. The cyan and magenta
symbols in Figs. 4a and 4b are the data points with the fitted lattice spacingtitmse8;a?a,
subtractedi.e. ata= 0, and the cyan and magenta lines are the fitting functi@en-a0.

The second form (magentH)[8] includes thevithout the assumption th&t = My — My >>
fr. When Taylor expanded in powers of; this includes terms up tor, mtlog(my).

6 2
M1 = Mor + A (Mar1)? +Ag(myr1)* + Bia?a + Bo(myr1)2aa + r1253§f2 H (Myz, Ma — My, A)
" (3.2)
where, ifm; < A= Mp — My
3 3
H My, 8,A) = A%10g(28/my) + An, 5 log(mz/A) -1 (3.3)
3/2 3 3
~ (842-m2)*log (A/mn+ \/ 22 /m — 1) — AN, (2 log(2A/A) — 4>
if mg>A
3 3
H (M, 8, ) = 8%l0g(28/my) + A { S log(ma/A) -1 (3.4)
— (M- A2)3/2 arccogA/my) — Amé <:23 log(2A/N) — i)

Systematic errors have not been properly analyzed yet, and the dagarsmimplete. With
these reservations, the ordef, chiral fit in Fig. 4 at the physical quark masshir; = 1.52+
.04+ syst, or My(MeV) = 942+ 25+ syst, where systematic errors dviyr; must be at least
0.045, the difference between the two chiral fitting forms. We are alsoriexeeting with chiral
extrapolations using fitting forms from partially quenched staggered greralirbation theory[9].

In fitting the Q™ mass the chiral extrapolation is simpler, but we must deal with its dependence
on the strange quark mass. Our lattice simulations were run with an estimate tbihgesquark
mass and only after running the simulation cam we determine what the cdreexes quark mass
is. Thus, we compute correlators at two valence strange quark masddbea interpolate to the
valence strange quark mass determined from pseudoscalar mesaoalpd4 ). Figure 5a (like
figure 3b for the nucleon) shows fits to tie correlators for runs at three different lattice spacings
with m =~ 0.2ms, again with arrows indicating the fit we chose. For the chiral and continuum
extrapolation we use a linear extrapolatioraim andaa, which fits well withx?/dof = 6.0/7.

Mar1 = Mor1 + A(mgr1)? + Béa (3.5)

Figure 5b shows th@~ masses interpolated to the strange quark mass determined from pseu-
doscalar mesons as a function of light quark mass. It also shows thenfiatmove fora ~ 0.125,
0.09 and 006 fm, and in the continuum limit,e. with B set to zero. The black symbol is the
experimental value fomgr1, where the error is from the uncertaintyrin

Errors on the extrapolated lattice result are statistical (0.7%), determindtimgfoom pseu-
doscalars (0.6%), and an estimate of neglected NNLO terms in chiral ebetiapo( ,c). Other
small errors come from using the wrong strange sea quark mass, anidiece of procedure for
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fixing strange quark mass. Using data available at conference time, tlieuzon and chiral ex-
trapolated value Mg xr; = 2.679f:8§2. Converting to physical units using = 0.3187) and
adding errors, this iMq(MeV) = 16601‘8, where the experimental value is 1672 MeV.

This work is supported by the US Department of Energy and National Stieaandation.
Computations were done at the NSF Teragrid, NERSC, USQCD centersoamuliter centers at

the Universities of Arizona, Indiana, Utah and California at Santa Barba
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Figure 5a:Q~ mass fits fom = 0.2ms. In Figure 5b: Q~ masses and fitting (see text).
these plots the strange quark mass has not The error on the experimental point is from
been tuned to the corrent; it is one of the the error inry.

masses at which correlators were computed.
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