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1. Introduction

The pion plays an important rôle in nuclear and particle physics. Identified as a pseudo Gold-
stone boson of chiral symmetry breaking it has a prominent position in the low energy sector of
quantum chromodynamics (QCD). Furthermore, with its two valence quarks and spin zero it is one
of the most basic bound states in QCD and hence appears to be simple. The internal structure of the
pion is, however, not very well known. This has to be seen in connectionwith the difficult experi-
mental situation. Among the few experimentally measured quantities are the electromagnetic form
factorFπ and parton distribution functions (PDFs). The latter quantities are less well known than
for the nucleon, with the last experimental results dating back to the late 1980’s. One uncertainty
of the measured pion PDFs is the unconstrained distribution of sea quarks.The accessible infor-
mation for the PDFs also relies heavily on input from nucleon PDFs and the knowledge of nuclear
effects to correct for scattering on a tungsten target [1], adding additional ambiguities. The second
observable highlighted in these proceedings, the distribution of transversely polarised quarks inside
the pion, has not been measured experimentally. Clearly, lattice QCD is in the unique position to
provide additional or, as in the latter case, first results from first principles.

2. Generalised Parton Distributions

A powerful tool to investigate the structure of hadrons are generalised parton distributions
(GPDs). They are defined by non-local matrix elements evaluated on the light cone (see [2] for
a definition). GPDs contain both PDFs and the electromagnetic form factor aslimiting cases and
are a generalisation of these known observables. For the pion two GPDs exist: the vector and ten-
sor GPDsHq

π(x,ξ ,∆2) andEq
T,π(x,ξ ,∆2), respectively. Both depend on three kinematic variables,

namely the momentum fractionx of the pion’s momentum carried by the struck quarkq, the longi-
tudinal momentum fraction 2ξ = −∆+/P+, and the momentum transfer∆µ = p′µ − pµ . Herepµ

andp′µ are the momenta of the incoming and outgoing pion, andPµ is their average.

In the forward limit where∆ → 0, the momenta of the pion states are equal and the matrix
elements take the form used in the definition of PDFs, making the connection to theGPD Hq

π
apparent. We arrive at the probability densityq(x) of finding a partonq with a given momentum
fractionx. We can write

Hq
π(x,0,0) = Θ(x)q(x)−Θ(−x)q(x) , −1≤ x≤ 1. (2.1)

The relation of GPDs to form factors is found when integratingHq
π over the momentum frac-

tion x. The operator in the matrix element then becomes the local vector current sothat we have

∫

dxHu
π(x,ξ ,∆2) = Fπ(∆2) . (2.2)

This is the lowest possible Mellin moment for which the integrand is weighted withxn (n =

0,1,2, . . . ) for the (n+ 1)-th moment. In general, Mellin moments turn the non-local light cone
matrix elements to local ones involvingn covariant derivatives. These matrix elements of local
operators are the quantities calculated on the lattice. They are parametrised by generalised form
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factors (GFFs)Aπ
n,i andBπ

Tn,i as

〈

π(p′)
∣

∣S u(0)γµ1 i
↔
Dµ2 . . . i

↔
Dµn u(0)

∣

∣π(p)
〉

= 2S

n

∑
i=0
even

∆µ1 . . .∆µi Pµi+1 . . .Pµn Aπ
n,i(∆

2), (2.3)

〈

π(p′)
∣

∣A S u(0) iσ µν i
↔
Dµ1 . . . i

↔
Dµn−1 u(0)

∣

∣π(p)
〉

= A S
Pµ∆ν −∆µPν

mπ

n−1

∑
i=0
even

∆µ1 . . .∆µi Pµi+1 . . .Pµn−1 Bπ
Tn,i(∆

2), (2.4)

where we first symmetrise (S ) in µ1, . . . ,µn or ν ,µ1, . . . ,µn, then anti-symmetrise (A ) in µ,ν and
finally subtract the traces. Here we consider up-quarks for definiteness. Comparing (2.2) and (2.3)
we see thatAπ

10 = Fπ . Knowledge of all GFFs would be equivalent to knowing the GPDs. However,
in practice only the lowest few moments can be calculated. Considering the forward limit again,
we find for the Mellin moments of the vector GPD

〈xn〉 =
∫

dx xnHu
π(x,0,0) =

∫ 1

0
dxxn [u(x)− (−1)nu(x)] , for n = 0,1,2, . . . . (2.5)

The moments thus involve the sum or the difference of quark and anti-quarkdistributions for odd
and evenn.

3. Results

Our simulation was done usingO(a) improved Clover Wilson fermions with two dynamical
flavours and Wilson glue. The set of lattices comprises fourβ values with three to sixκ values
each, which have been generated within the QCDSF, UKQCD and DIK collaborations. The pion
masses reach down to about 350MeV with a lattice spacinga between 0.07 fm and 0.12 fm. Our
lattice sizes are 163×32, 243×48, and 323×64 with physical spatial size of up to 2.5 fm, where
we use the Sommer parameter withr0 = 0.467 fm to set the physical scale. Furthermore we use
non-perturbative renormalisation to obtain results in theMS scheme at a scaleµ = 2GeV [3].

The techniques for calculating and extracting the necessary three-pointfunctions have been
explained in earlier publications [4, 5, 6].

3.1 Moments of Parton Distributions

We use operators namedOv2b, Ov3, andOv4 with up to three derivatives (see, e.g., [4, 7])
to obtain the moments〈xn〉 with n = 1,2,3. The preliminary results for our different lattices are
shown in Fig. 1. Here we have consideredOv2b for vanishing pion momentum, while the other
two operators require one unit of momentum. The statistical errors for〈x〉 are thus considerably
smaller. Also included in the plot is an extrapolation linear in the square of the pion mass. Note
that one-loop chiral perturbation theory predicts such a linear relation only for 〈xn〉 with oddn [2].
In order to reach firm conclusions one has to take into account the systematic uncertainties. These
will be discussed in detail in an upcoming paper. The effects due to the limited physical volume
are most prominent. To get an idea about the size of these effects, we include a simple volume
dependent term in our extrapolation

〈xn〉(mπ ,L) = c0 +c1m2
π +c2m2

πe−mπ L , (3.1)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
4
0

Quark distributions in the pion Dirk Brömmel

〈 x
〉

〈 x
〉

〈

x2
〉

〈

x2
〉

〈

x3
〉

〈

x3
〉

m2
π [GeV2]

0.3

0.4

0.3

0.4
0 0.2 0.4 0.6 0.8 1 1.2 1.4

O
(~p=0)
v2b

0.1

0.2

0.1

0.2

Ov3

0

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

Ov4

Figure 1: The moments〈xn〉 extrapolated linearly in the square of the pion mass. The coding of the symbols
is according to theβ values: (red) squares, (green) circles, (blue) diamonds, and (purple) hexagons forβ =

5.20,5.25,5.29,5.40, respectively. The solid line and error band show a linearfit in m2
π , the star represents

the extrapolated value at the physical pion mass.
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Figure 2: Estimates of the finite size effects for the moments〈xn〉. The panels are forn = 1,2,3 from left
to right and pion masses around 800MeV, 600MeV, and 430MeV from top to bottom. The open symbols
refer to our finite size runs and the fit and its error band are for the corresponding average pion mass.
Colour/symbol coding as before.

whereL is the lattice size. A combined fit to our lattice data profits from two additional finite
size runs where only the physical volume has been varied. The results ofsuch fits are shown in
Fig. 2, displaying groups of our lattice data of similar pion mass (800MeV, 600MeV and 430MeV).
Because of the size of our statistical errors, only the lowest moment〈x〉 shows a clear dependence
on the volume and we expect our results to decrease in the infinite volume. Notethat our lowest
pion masses are affected more drastically. We estimate a finite size effect of the order of 10% for
the smallest pion masses.

We compare our results to two different PDF parametrisations extracted from experiment.
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Figure 3: Comparison of phenomenological and lattice data. The uppervalue of the band is calculated from
[1] while the lower one is the value from [8]. The (red) plus isthe current data and we include lattice data
from the other references as labelled in the plot. The scale is always taken to beµ = 2GeV apart from [4]
which is forµ ≈ 2.4GeV.

The first one uses a parametrisation of similar form as in the nucleon case [1], the other one uses a
constituent quark model closely related to the proton PDFs [8]. This comparison is shown in Fig. 3,
which also includes other lattice data from quenched simulations [4, 9, 10]. The number from
[10] is a result close the physical pion mass and no extrapolation has beentaken. It is important
to note that our lattice results for〈xn〉 lack contributions from disconnected fermion lines when
n = 1 or 3. The preliminary numbers for the moments of the quark PDF inMS at µ = 2GeV are
〈x〉 = 0.271(2)(10),

〈

x2
〉

= 0.128(6)(5) and
〈

x3
〉

= 0.074(9)(4), with quoted uncertainties only
from statistical and renormalisation errors.

3.2 Transverse Spin Structure

The second observable covered in these proceedings is the distribution of transversely po-
larised quarks inside the pion. We will only focus on the basic idea, more details can be found in
[11]. Starting point is an operator that projects out quarks with transverse polarisation~s: 1

2q̄[γ+ −

sj iσ+ jγ5]q, [12]. It is connected to the GPDsHq
π(x,ξ ,∆2) andEq

T,π(x,ξ ,∆2) when measured be-
tween pion states. A Fourier transform with respect to∆⊥ for ξ = 0 makes a probabilistic interpre-
tation possible, leading to densitiesρ(x,~b⊥) in the transverse plane [13]:

ρu(x,~b⊥) =
1
2

(

Hu
π(x,~b2

⊥)−
siε i j b j

⊥

mπ

∂
∂~b2

⊥

Eu
T,π(x,~b2

⊥)

)

. (3.2)

Here the Fourier transformed GPDs appear and we have again used up-quarks. The important point
to note is the correlation between the transverse position~b⊥ of the quark and its spin~s. Depending
on the size ofEu

T,π we will thus find a deformation of the distribution of quarks.
Our lattice calculation can again only provide moments of this density which are given in

terms of the Fourier transformed GFFsAπ
n,i(∆2) and Bπ

Tn,i(∆2) from Eqs. (2.3) and (2.4). The

lowest moment of the densityρu(x,~b⊥) needs the two GFFsAπ
1,0 andBπ

T,1,0. In order to perform
the Fourier transform, we need to parametrise our data as follows:

F(∆2) = F(0)

(

1−
∆2

pM2

)−p

, (3.3)

whereF can be any of our GFFs. Our lattice data does not constrain the exponentp very strongly.
However, requiring that the densityρu is regular at the origin, it follows thatp > 1 for Aπ

n,0 and
p > 3/2 for Bπ

Tn,0 [12].
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Figure 4: Linear extrapolation ofBπ
T1,0/mπ andM2 againstm2

π . The colour/symbol coding is the same as in
Fig. 1.
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Figure 5: The lowest moment of the quark distribution in the transverse plane. The l.h.s. shows the unpo-
larised case obtained fromAπ

1,0(
~b2
⊥), the r.h.s. is for transversely polarised up-quarks insidethe pion. The

orientation of the spin is as indicated in the plot.

The data forAπ
1,0 is taken from [6] using a pole-fit withp= 1.1. The data forBπ

T1,0 is fitted with
an exponentp = 1.6. The corresponding results form−1

π Bπ
T1,0(0) and the pole mass are shown in

Fig. 4. This figure also includes extrapolations linear in the squared pion mass. The extrapolation
of Bπ

T1,0(0) is guided by chiral perturbation theory, which finds thatBπ
T1,0(0) should vanish as the

pion mass goes to zero [2]. The fits givem−1
π Bπ

T1,0(0) = 1.648(54) andM = 0.767(40)GeV at the
physical pion mass. The slight change of the results compared to [11] aredue to a different choice
in fit ranges. Note that the errors are statistical only, see [11] for the influence of lattice artefacts.

The resulting densityρq(x,~b⊥) is shown in Fig. 5 and exhibits a very clear correlation of quark
spin and transverse position.
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