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1. Introduction

Nucleon structure observables such as baryon form factors and moments of (generalised) par-
ton distributions are extracted from 3pt functions which have connected and disconnected contri-
butions. The latter, of the form Tr(ΓM−1)×2pt function, are normally omitted as they require the
calculation of all-to-all propagators M−1

x,y . Instead often differences between observables, for exam-
ple gA = ∆u−∆d, are quoted. However, any settling of the question of the spin or the strangeness
content of the nucleon requires a calculation of the corresponding disconnected loops. In the fol-
lowing we present a new method for calculating all-to-all propagators whichreduces the associated
stochastic noise and should make such calculations more viable. This is a general method which
can be applied to all cases where all-to-all propagators are needed.

1.1 Stochastic methods for all-to-all propagators

The standard method for computing all-to-all propagators is via stochastic sampling. A set of
random complexZ(2) noise vectors,|η l 〉, l = 1. . .L, is generated for which,

1
L ∑

l

|η l 〉〈η l | = 1+O(1/
√

L),
1
L ∑

l

|η l 〉 = O(1/
√

L). (1.1)

Using these vectors as sources one can construct an unbiased estimate of the all-to-all propagator,
EL(M−1), using|η l 〉 and the corresponding solution vectors|sl 〉 = M−1|η l 〉:

EL(M
−1) =

1
L ∑

l

|sl 〉〈η l | = M−1 +M−1

(

1
L ∑

l

|η l 〉〈η l |−1) . (1.2)

From eqns. 1.1 and 1.2 it is clear that the stochastic error on the estimate only depends on the off-
diagonal elements of1L ∑l |η l 〉〈η l | and falls off as O(1/

√
L). For a fixed number of configurations,

depending on the quantity studied (obtained using EL(M−1)), the stochastic noise can dominate
over the gauge noise and additional noise reduction techniques are required.

It is important to note that any noise reduction techniques should be unbiased and the re-
sulting reduction in noise should justify the computational overhead. Existing techniques include
“partitioning” [1] where each noise vector|η l 〉 is replaced by a set of partitioned vectors|η l 〉p,
p = 1. . .P, where|η l 〉p has many zeros. By zero-ing entries in the source vector one will avoid
some of the large off-diagonal elements contributing in eqn. 1.2; the hope is that a smaller variance
is obtained for the same amount of computer time despiteP times as many inversions. Wilcox [1]
found the gain (in terms of computer time) for Tr(ΓM−1) for colour-spin partitioning to depend
strongly onΓ but could be in the region of factors of 3−7 (for Γ = γµν andγµγ5) or higher (forγ5).

The Kentucky group [2] take a different approach and use the hopping parameter expan-
sion (HPE), to construct traceless estimates of the off-diagonal elements ineqn. 1.2. Subtracting
these estimates from Tr(ΓM−1), where M= 1−κ 6D, leaves the trace unchanged but reduces the
variance. This approach should work well in the heavy quark regime, for example for masses down
to the strange quark mass. Mathur and Dong [3] found a gain of a factor of 6− 7 subtracting
up toκ4 6D4 for the strangeness contribution to the magnetic moment of the nucleonGs

M(0). The
computational overhead of performing the subtraction was not significant.
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Additional approaches also exist: for example in the light quark regime one can calculate the
low lying eigenmodes of the Dirac operator and use these to estimate part of thepropagator [4].
The remainder can be calculated stochastically [5]. Different methods canoften be combined.

1.2 A new approach: unbiased truncation of the solver

We present a new method for noise reduction which involves stopping the inversion of the
stochastic propagator before convergence, i.e. usingnt iterations in the solver to obtain|sl

nt
〉 =

M−1
nt
|η l 〉 instead of running to convergence usingnc iterations and obtaining|sl

nc
〉 = M−1

nc
|η l 〉.

The difference between M−1
nc

and M−1
nt

can be estimated stochastically using an independent set of
sources:

E[M−1
nc

] = EL1[M
−1
nt

]+EL2[M
−1
nc

−M−1
nt

]. (1.3)

This is based on an exact linear decomposition and the algorithm with which bothparts are calcu-
lated is well defined. Using two independent sets of noise vectors for the two parts then implies
an unbiased estimate of M−1

nc
. If the inverter converges rapidly significant gains in computer time

can be obtained. Rapid convergence means that M−1
nt

is very close to M−1
nc

even for smallnt ≪ nc.
Hence, the stochastic error can be reduced by performing a large number of cheap inversions for
EL1[M

−1
nt

], L1 ≫ L2, and only a small number,L2, of expensive inversions to calculate the small
correction.

To check this method we compared the exact result for(M−1)s1c1,s2c2
x,y , wheres1c1 denotes the

spin and color indices,x= (0,0,0,3) andy= (i,0,0,3), i = 0. . .10, with an estimate obtained from
eqn. 1.3. As expected we find consistency within errors for differentnt , L1 andL2. For example, for
nt = 5, L1 = 5500,L2 = 300,i = 1, s1 = s2 = 1, c1 = c2 = 2, E[M−1

nc
] = (0.0300(7),−0.0014(7))

compared to the exact result of(0.0302. . . ,−0.0010. . .).
We now have two parameters,nt and the ratioL1/L2, which need to be fixed, ideally, so as

to minimize the variance of the disconnected loop, Tr(ΓM−1
nc

), at fixed cost. ForL1,L2 ≫ 1 the
variance (Var) is given by

VarL1[Tr(ΓM−1
nt

)]+VarL2[Tr(Γ(M−1
nc

−M−1
nt

))] =
f1
L1

+
f2
L2

, (1.4)

where f1 and f2 depend onnt andΓ, while the approximate cost is given by

C = L1nt +L2nc. (1.5)

Using Lagrange multipliers and assumingf1 to be approximately independent ofnt we obtain the
optimal values

nopt
t =

1
nc

f2 f1
( f ′2)

2 ,
L1

L2
=

√

f1
f2

nc

nopt
t

, (1.6)

where f ′2 = ∂ f2/∂nt . For our observables we find that using these optimal values leads tof1
L1

≈ f2
L2

.
Additional gain can be obtained by combining with other noise reduction techniques. Here we

consider the HPE approach [2, 5]. The expansion of E[Tr(ΓM−1
nc

)] to orderm is given by:

E[Tr(ΓM−1
nc

)] =
1
L ∑

l

[

〈η l |Γ|η l 〉+ 〈η l |Γκ 6D|η l 〉+ . . .+ 〈η l |Γκm 6Dm|η l 〉
]

+E[Tr(Γκm+1 6Dm+1M−1
nc

)], (1.7)
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where, since this is a geometric series, the last term gives the remainder,∑∞
p=m+1〈η l |Γκ p 6Dp|η l 〉,

averaged over stochastic sources. One can omit terms in the expansion which only contribute to
the noise. All odd terms, Tr(Γ 6D2m+1) = 0, ∀ Γ. For the even terms, Tr(Γ) = 0 ∀ Γ 6= 1, while 1

Tr(Γ 6D2) = 0 ∀ Γ and forΓ = γµγ5 andγ5, even Tr(Γ 6D4) = Tr(Γ 6D6) = 0. Hence, forΓ = γµγ5 and
γ5, since all terms up to 8th order only contribute to the noise, an improved estimate of the trace is
given by E[Tr(Γκ8 6D8M−1)]. For all otherγ combinations we use2 E[Tr(Γκ4 6D4M−1)]. The 4th
and 6th order terms can be calculated explicitly [2] to achieve the same level ofimprovement as for
Γ = γµγ5 andγ5, however, we have not done so in this study. To combine with our truncatedsolver
method we substitute, for example,κ8 6D8M−1 for M−1 in eqn. 1.3.

2. Results

We have performed an exploratory study of our method using configurations provided by the
Wuppertal group: these arenf = 2+1 dynamical configurations generated using a Symanzik im-
proved gauge action and a stout-link improved staggered fermion action. The lattice spacing is
fairly coarse,a−1 ≈ 1.55 GeV while the volume is around 2 fm. Further details can be found in [6].
For valence quarks we used the Wilson action withκ = 0.166, 0.1675 and 0.1684 corresponding to
pseudoscalar masses of about 600, 450 and 300 MeV respectively. Our main results were obtained
using the conjugate gradient algorithm with even-odd preconditioning to perform the propagator
inversions. However, section 2.3 will show results obtained using the stabilised biconjugate gra-
dient algorithm (BiCGStab). The code used throughout was a modified version of the Chroma
code [7].

Results are presented below for the disconnected loop, Tr(ΓM−1), where we have considered
Γ = 1, γµ , γµγ5, σµν , γ5. Using M−1 = γ5(M−1)†γ5 one can show that the trace is either real or
imaginary3. At this initial stage we are only interested in the stochastic error and, hence,the results
are presented for the trace on a single configuration. In addition to combining our method with the
HPE approach we also partition in time:|η l 〉 are only non-zero fort = 3.

2.1 Truncating the solver

The truncated solver method (TSM) relies on Tr(ΓM−1
nt

) coming close to the convergent value
after only a few iterations of the inverter. We found this to be true for allΓs studied and the
example ofΓ = 1 is shown in figure 1. Clearly the trace is close to the limiting value after 20
iterations (compared to the 480 iterations needed for convergence). Proceeding to the calculation
of the optimal values fornt andL1/L2, we use Tr(ΓM−1

nt
) and Tr[Γ(M−1

nc
−M−1

nt
)] calculated on a

single set of stochastic estimates,L = 300, fornt = 2 to 100 in steps of 2 iterations to estimatef1,
f2 and f ′2 as functions ofnt . Using eqn. 1.6 we obtain the optimal values given in table 1. The
results are presented for a subset ofΓs and show that all values fornopt

t are small, but also thatnopt
t

andL1/L2 depend on theΓ used.
No error analysis has been attempted for these values and they should be considered rough

estimates. However, we have increased the number of stochastic estimates to 500 and no significant

1These terms are zero for the Wilson action. For the clover action only them= 0 term can be omitted.
2Where forΓ = 1 we construct the non-vanishing Tr1.
3Of course the path integral expectation value〈TrΓM−1〉 = 0 ∀ Γ 6= 1.
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Figure 1: The disconnected loop forΓ = 1 as a function of the number of iterations used in the inverter
for M−1 for κ = 0.166. The loop is shown for (left)L = 1 where the horizontal line shows the value at
convergence (nc = 480) and (right), with errors,L = 300.

E[Tr(ΓM−1)] TSM TSM+HPE

Γ 1 γ3 γ1γ2 γ5 γ3γ5 1 γ3 γ1γ2 γ5 γ3γ5

nopt
t 50 27 14 18 18 66 78 50 78 90

L1/L2 23 21 32 28 30 26 25 21 26 26
m 4 4 4 8 8

Gain 5 5 10 8 8 8 11 19 24 29

Table 1: Optimal values fornt and L1/L2 for a subset of theΓs studied, calculated usingL = 300 for
κ = 0.166. The gains obtained for the estimate of Tr(ΓM−1) using these optimal valuesat fixed costare
also shown. Where our method is combined with the HPE technique,m indicates the order used.

change in the results was found. Usingnopt
t andL1/L2 we can calculate the gain in computer time

using the TSM at fixed cost this time withL1 andL2 independent stochastic sources. The cost,
to be inserted in eqn. 1.5, is set by generating 300 stochastic estimates of Tr(ΓM−1). The gain
corresponds to

Gain =
Var[Tr(ΓM−1)]

Var[Tr(ΓM−1)][TSM]
(2.1)

Table 1 shows the TSM to result in significant gains for allΓs studied, includingΓ = 1. Note that,
if time partitioning is not used in nominator and denominator these numbers are likelyto be much
larger.

We expect further variance reductions to be achieved when combining our method with the
HPE technique discussed in section 1.2. Figure 2 shows the disconnected loop for κ = 0.166,
which corresponds to about 20% below the strange quark mass, forΓ = 1 andγ3γ5. We see that for
Γ = 1 the variance does not reduce significantly asκ 6D is applied up to the limit ofm= 4. This is
also the case forΓ = γ4. However, for all otherΓs significant reductions in the variance are found,
as seen forγ3γ5.

Once combined with the TSM, the optimal values,nopt
t andL1/L2 must be recalculated. Ta-

ble 1 shows thatnopt
t increases compared to using TSM alone, however, it is still much less than
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Figure 2: The disconnected loop forΓ = 1 andγ3γ5 as a function of the number of applications ofκ 6D
applied to the propagator forκ = 0.166 andL = 200. Time partitioning has been used.

Gain TSM TSM+HPE

mPS 1 γ3 γ1γ2 γ5 γ3γ5 1 γ3 γ1γ2 γ5 γ3γ5

600 MeV 5 5 10 8 8 8 11 19 24 29
450 MeV 5 5 10 8 8 7 11 17 22 24
300 MeV 5 5 10 8 8 6 9 14 17 18

Table 2: The variation in the gains for Tr(ΓM−1) as the quark mass is decreased.

nc = 480. With these values increased gains are obtained for allΓs; most notably forγ3γ5 an over-
all gain of a factor of roughly 30 is obtained. These factors were calculated taking into account
the cost of the applying the6D; for example application of6D4 corresponds to 5% of the cost of a
propagator inversion withnt = 66. It may be possible to increase the gain forΓ = 1, γµ andσµν

by explicitly calculating the 4th and 6th order in the HPE.

2.2 Effect of decreasing the quark mass

The results presented so far have been for a quark mass slightly below thestrange quark mass.
If the quark mass is reduced further, table 2 shows that down tomPS ≈ 300 MeV there is no
significant change in the values for the TSM method. As expected, the HPE technique becomes
less effective as the quark mass decreases and this is reflected in the drop in the factors for the
combined TSM+HPE. Nevertheless, at 300 MeV the gain is still≥ 2 times that for the TSM
method alone for some of theΓs.

2.3 Using a different solver

The results in the previous sections were obtained using the conjugate gradiant (CG) algorithm
in the solver. We are repeating the study using BiCGStab to see whether we can also achieve high
gains with a more optimized solver. BiCGStab converges in less iterations than CG, for example,
nc = 156 compared to 480 for CG atκ = 0.166. However, each iteration is more expensive.
Furthermore, BiCGStab does not converge smoothly. This means we cannot calculate optimal
values fornt and L1/L2 (which depend on∂ f2/∂nt). However, we can fixL1/L2 ≈ f1/ f2 by

6
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requiring Var[Tr(ΓM−1
nt

)]≈Var[Tr(Γ(M−1
nc

−M−1
nt

))] and varynt to find the best gain. Initial results
usingnt = 14 give, for example, gains of 9 and 24 forΓ = γ3γ5 using the TSM and TSM+HPE
respectively, similar to the factors obtained using the CG solver.

3. Summary

The truncated solver method works well, providing gains in computer time of factors of 4−12
for the disconnected loop, depending on the operator, for quark masses in the range ofmPS =

600−300 MeV. The method is easy to implement, independent of the quark action and, as we have
shown, can be combined with other methods like the HPE technique to obtain gainsof factors of
around 30 for some operators. Future work will include combining our method with the truncated
eigenmode approach and a study of the size of the gauge noise.
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