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We present our updated results of the nucleon-nucleon potential in quenched lattice QCD simula-

tions with the plaquette gauge action and the Wilson quark action on the 324(≃ (4.4fm)4) lattice.

From the equal-time Bethe-Salpeter (BS) wave function, theNN potential is constructed through

the Schrödinger-type equation. Resulting NN potential hasall the qualitative features which phe-

nomenological potentials commonly have: the repulsive core at short distance and the attractive

well at medium and long distances. In theL → ∞ limit, our NN potential is guaranteed to re-

produce the scattering length obtained from the Lüscher’s formula. The quark mass dependence

of the NN potential is studied withmπ ∼ 380,529,731 MeV. The results suggest that both the

repulsive core at short distance and the attractive well at medium distance are enhanced in the

light quark mass region.
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Lattice QCD approach to nuclear force N. Ishii

1. Introduction

The nuclear force is the essential ingredient in nuclear physics. Since H. Yukawa has intro-
duced the pion 72 yeas ago [1], enormous efforts have been devoted to understand the origin of the
nuclear force [2]. At medium to long distances (r>∼1.2 fm), the nuclear force is attractive, which
is essential for the existence of bound nuclei. Furthermore, the nuclear force exhibits the repulsive
core at short distance (r<∼0.7 fm), which is intimately related to the stability of heavy nuclei and
neutron stars. The field theoretical treatment on the basis of the pion and heavy meson exchanges
has reasonable success at long and medium distances. However, the repulsive core at short dis-
tance, which was first introduced by R. Jastrow 56 years ago toexplain the high energy behavior of
the NN phase shifts [3], has not been understood with firm theoretical ground. Since the nucleons
begin to overlap at short distances, the quark and gluon structure of the nucleon is expected to play
an important role. In this respect, the first principle lattice QCD calculation is desired to serve as
the most powerful tool to attack the problems of the nuclear force. There exits a previous attempt
to apply the formalism of the staticqq̄ potential to NN potential [4]. However, the method which
employs the static quarks is not faithful to the scattering data of nucleons.

We have recently generalized the method developed by CP-PACS collaboration [5] for the
ππ scattering length and have carried out a first calculation ofthe NN potential from lattice QCD
[6]. In our method, the Bethe-Salpeter wave function, whoseasymptotic form leads to correct
NN phase shift in the asymptotic regime, is introduced to construct the NN potential through the
Schrödinger-type equation. The resulting NN potential hasall the qualitative features required
by phenomenology, i.e., the repulsive core at short distance and the attractive well at medium to
long distances. In the report, we extend our previous calculations by increasing statistics and by
introducing different quark masses corresponding to the pion masses,mπ ≃ 380,529,731 MeV.
The results show that both the repulsive core and attractivewell are enhanced in the light quark
mass region.

2. The formalism

We begin with the Schrödinger-type equation, which is satisfied by the Bethe-Salpeter wave
function for the NN system,

(

~∇2−k2
)

ΨE(~r) = mN ∑
~r ′

U(~r,~r ′)ΨE(~r ′) (2.1)

ΨE,αβ (~r) ≡ lim
t→+0

〈

0
∣

∣T
[

pα(~x, t)nβ (~y,0)
]
∣

∣NN(E)
〉

(2.2)

where~r ≡~x−~y. pα(x) andnβ (y) denote the standard local interpolating fields for nucleons,

pα(x) ≡ εabc
(

uT
a (x)Cγ5db(x)

)

uc,α (x), nβ (y) ≡ εabc
(

uT
a (y)Cγ5db(y)

)

dc,β (y), (2.3)

wherea,b andc denote the color indices.α andβ denote the Dirac indices.C denotes the charge
conjugation matrix. (For derivation of Eq. (2.1), see Refs.[5, 7, 8].) U(~r,~r ′), which does not
depend onE, plays a role of the non-local interaction kernel [8]. The most general (off-shell) form
of NN potential after imposing constraints arising from various symmetries is analyzed in Ref. [9].
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By applying the derivative expansion up toO(~∇2), we obtain

U(~r,~r ′) = U1(~r,~r
′)+ (~τ1 ·~τ2)Uττ(~r ,~r

′) (2.4)

= P
(I=0)U (I=0)(~r ,~r ′)+P

(I=1)U (I=1)(~r ,~r ′)

U (I)(~r ,~r ′) = V(I) ·δ (~x−~x′)

V(I) = V(I)
0 +(~σ1 ·~σ2)V

(I)
σ +S12V

(I)
T +(~L ·~S)V(I)

LS +
{

~σ1 ·~L,~σ2 ·~L
}

V(I)
LL +

{

~σ1 ·~∇,~σ2 ·~∇
}

V(I)
pp

≃ V(I)
0 (r)+ (~σ1 ·~σ2)V

(I)
σ (r)+S12V

(I)
T (r)+ (~L ·~S)V(I)

LS (r)+O(~∇2), (2.5)

whereP(I=0) ≡ (1−~τ1 ·~τ2)/4 andP(I=1) ≡ (3+~τ1 ·~τ2)/4 denote the projection matrices toI = 0
andI = 1 subspaces, respectively.{∗,∗} denotes the anti-commutator.S12 ≡ (~σ1 ·~r)(~σ2 ·~r)/r2 −

~σ1 ·~σ2,~L ≡−i~r ×~∇ and~S≡ (~σ1+~σ2)/2. V(I)
0 , V(I)

σ , V(I)
T , V(I)

LL andV(I)
pp are functions of~r2,~∇2, and

~L2. We combine the 1st and the 2nd terms in the last line asV(I)
C (r) ≡ V(I)

0 (r)+ (~σ1 ·~σ2)V
(I)

σ (r),

and refer toV(I)
C (r) as thecentral force. V(I)

T (r) andV(I)
LS (r) are refereed to as thetensor forceand

theLS force, respectively. These three forces play major roles in conventional nuclear physics.
In QCD, the closest concept to the quantum mechanical wave function is provided by the

equal-time Bethe-Salpeter (BS) wave function Eq. (2.2). Note that Eq. (2.2) represents a probability
amplitude to find three quarks at~x and another three quarks at~y. It is possible to show that Eq. (2.2)
has a proper asymptotic behavior at|~x−~y| → ∞ [8]. For example, in the1S0 channel, we have

ΨE(~r) → eiδ0(k) sin(kr + δ0(k))
kr

. (2.6)

The BS wave function is obtained from the larget behavior of the “four-point” correlator of the
nucleon

〈0|T [p(~x, t)n(~x, t)W(t = t0)]|0〉 = ∑
n
〈0|p(~x,0)n(~y,0)|n〉e−iEn(t−t0) 〈n|W(t = 0)|0〉 . (2.7)

Here,W(t)≡ P̄(t)N̄(t) represents the wall source, whereP(t) andN(t) are defined as Eq. (2.3) with
the quark fieldsq(~x, t) replaced byQ(t) ≡ ∑~xq(~x, t). Since contributions from all excited states are
exponentially suppressed in the larget region, we are left with the BS wave function for the ground
state. In this report, we consider only1S0 and3S1 channels whose BS wave functions are

Ψ(~r ;1S0) =
1
24 ∑

R∈O

1
L3 ∑

~X

(σ2)αβ

〈

0
∣

∣

∣
pα(R·~r +~X)nβ (~X)

∣

∣

∣
NN(E)

〉

(2.8)

Ψ(~r ;3S1) =
1
24 ∑

R∈O

1
L3 ∑

~X

(σ2σ3)αβ

〈

0
∣

∣

∣
pα(R·~r +~X)nβ (~X)

∣

∣

∣
NN(E)

〉

,

where the summations overR∈ O are performed for cubic transformation group. The summations
for ~X are performed to select the zero total spatial momenta.

First we consider the Schrödinger equation in1S0 channel. Owing to the identical nature of the
nucleons, two nucleon system in1S0 channel is iso-vector. Since the contributions from the tensor
force and the LS force vanish in this channel, we are left withthe following Schrödinger equation,

(

−
1

2µ
~∇2 +V(I=1)

C (r)

)

Ψ(~r ;1 S0) =
k2

2µ
Ψ(~r ;1 S0), (2.9)
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κ Nconf mπ [MeV] mN [MeV] t − t0 E(1S0) [MeV] E(3S1) [MeV]

0.1640 1000 732.1(4) 1558.4(63) 7 −0.400(83) −0.480(97)
0.1665 2000 529.0(4) 1333.8(82) 6 −0.509(94) −0.560(114)
0.1678 2021 379.7(9) 1196.6(32) 5 −0.675(264) −0.968(374)

Table 1: The number of gauge configurationsNconf, the pion massmπ , the nucleon massmN, time-slice
t − t0 on which BS wave functions are measured, and the non-relativistic energiesE ≡ k2/(2µ) for 1S0 and
3S1 channels.

whereµ ≡ mN/2 denotes the reduced mass of the nucleon.k plays the role of the “asymptotic
momentum”. SinceV(I=1)

C (r) = V(I=1)
0 (r)− 3V(I=1)

σ (r) is an ordinary function, which does not
involve a derivative nor matrix structure, we arrange the Schrödinger equation to obtain

V(I=1)
C (r) =

k2

2µ
+

1
2µ

~∇2Ψ(~r ;1 S0)

Ψ(~r ;1 S0)
. (2.10)

Next, we consider the Schrödinger equation in3S1 channel. In this case, two nucleon system
is iso-scalar. Unlike1S0 case, this channel receives a non-vanishing contribution from the tensor
force, which provides a coupling to3D1 channel.3D1 channel receives a contribution from the LS
force. In this way, we have three unknowns, i.e.,V(I=0)

C (r), V(I=0)
T (r) andV(I=0)

LS (r) with two equa-

tions, i.e.,3S1 and3D1. (V(I=0)
C (r) = V(I=0)

0 (r)+V (I=0)
σ (r) should not be confused withV(I=1)

C (r).)
To obtain these three forces exactly, we need one more equation such as the Schrödinger equation
in 3D2 channel. In this report, we do not pursue this direction. Instead, we adopt the same pro-
cedure as the1S0 channel. This leads to the so-called “effective central force” Veff

C (r) which takes
into account the3D1 channel indirectly through the tensor force.

3. The lattice QCD result

We employ the standard plaquette action on 324 lattice with β = 5.7 to generate quenched
gauge configurations. The gauge configurations are picked upevery 200 sweeps after skipping
3000 sweeps for thermalization. Quark propagators are generated by employing the standard
Wilson quark action withκ = 0.1640,0.1665 and 0.1678. The scale unit 1/a = 1.44(2) GeV
(a ≃ 0.137 fm) is introduced from the rho meson mass in the chiral limit [10]. The physical size
of our lattice corresponds toL ∼ 4.4 fm. The number of gauge configurationsNconf, the pion mass
mπ , the nucleon massmN are summarized in Table 1. (Forκ = 0.1678, 24 gauge configurations
are identified as exceptional configurations, which are not used in the calculations.)

The periodic (Dirichlet) boundary condition is imposed on the quark fields along the spatial
(temporal) direction. We adopt the wall source on the time-slice t = t0 ≡ 5. The BS wave functions
are measured on the time-slicet − t0 = 7,6,5 for κ = 0.1640,0.1646,0.1678, respectively. The
ground state saturation is examined by t-dependence of the NN potential. We employ the nearest
neighbor representation of the discretized Laplacian as~∇2 f (~x) ≡ ∑3

i=1{ f (~x+a~ei)+ f (~x−a~ei)}−

6 f (~x), where~ei denotes the unit vector along thei-th coordinate axis. BS wave functions are fully
measured for|~r|<∼0.7 fm, where rapid changes of BS wave function and NN potentialare expected.
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Figure 1: NN wave functions in1S0 and3S1 channels (left), and NN potentials (right), i.e., central force in
1S0 channel and effective central force in3S1 channel forκ = 0.1665. The inset of the left figure is a 3D plot
of the wave functionφ(x,y,z= 0;1S0).

Since the changes are rather modest for|~r |>∼0.7 fm, the measurement of BS wave functions is re-
stricted on the coordinate axes and their nearest neighborsto reduce the calculational cost. The
“asymptotic momentum”k2 is obtained by fitting the BS wave function: We use the Green’sfunc-
tion of the Helmholtz equation,

G(~r ;k2) ≡
1
L3 ∑

~n∈Z3

exp(i2π~n ·~r/L)

(2π/L)2~n2−k2 , (3.1)

as the fit function by regarding the overall numerical factorandk2 as fit parameters. (An appropriate
regularization is assumed in this representation of Green’s function.) The fits are performed outside
of the range of NN interaction, which is determined by examining~∇2Ψ(~x)/Ψ(~x) [5].

Fig. 1 (left) shows the BS wave functions in1S0 and3S1 channels forκ = 0.1665. The sup-
pression of the wave function in the regionr<∼0.5 fm indicate the existence of repulsion at short
distance. Fig. 1 (right) shows the reconstructed NN potentials forκ = 0.1665, i.e., the central force
for 1S0 channel and the effective central force for3S1 channel. (See Table 1, for the values of the
non-relativistic energiesE ≡ k2/(2µ) in Eq. (2.10).) We see that our NN potentials have repulsive
cores of 500−600 MeV in the short distance region (r<∼0.5 fm) and attractions of about 30 MeV
in the medium distance region (0.5<∼r<∼1.2 fm). Both the repulsive core at short distance and the
attractive well at medium distance are weaker than those expected phenomenologically. This is
due to the heavy quark mass in our simulations In the light quark mass region, pion can propagate
longer distance, which is expected to enhance the attraction at medium and long distance.

To see the quark mass dependence in a quantitative manner, weshow the NN potentials for
three different quark masses in1S0 channel in Fig. 2. As the quark mass decreases, the repulsive
core at short distance is enhanced rapidly, whereas the attraction at medium distance is modestly
enhanced. This indicates that it is important to perform thelattice QCD calculation in the lighter
quark mass region in order to compare our result with experimental data.

Several comments are in order here.
(i) The net interaction is attractive even in the presence ofthe repulsive core. Indeed, Lüscher’s
finite volume method leads to the attractive scattering length, i.e.,a0(

1S0) = 0.115(26), 0.126(25),
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Figure 2: Central forces in1S0 channel for three quark masses.

0.159(66) fm anda0(
3S1) = 0.140(31), 0.140(31), 0.252(104) fm for κ = 0.1640,0.1665,0.1678,

respectively. The attractive nature of our potential is qualitatively understood by the Born approxi-
mation formula for the scattering lengtha0 ≃ −mN

∫

VC(r)r2dr. Owing to the volume factorr2dr,
the attraction at medium distance overcomes the repulsive core at short distance.
(ii) There is a considerable discrepancy between the above scattering lengths and the empirical val-
ues, i.e.,a(exp)

0 (1S0) ∼ 20 fm anda(exp)
0 (3S1) ∼ −5 fm. This is attributed to the heavy quark mass

employed in our simulations. If we can get closer to the physical quark mass, there appears an
“unitary region" where the NN scattering length becomes singular as a function of the quark mass
and changes sign [11, 12]. The singular point is related to the threshold of bound state formation.
This is why the physical scattering length is positively large in the1S0 channel (no bound state) and
is negatively large in the3S1 channel (deuteron bound state) .

4. Summary

We have extended our previous results of the nuclear force onthe lattice by increasing statistics
and adopting different quark masses. The NN potentials in the 1S0 and3S1 channels have all the
qualitative features which phenomenological NN potentials commonly have, i.e., the repulsive core
at short distance and attractive well at medium to long distances. The quark mass dependence of the
NN potential shows that the repulsive core at short distanceis enhanced rapidly, and the attraction at
medium distance is modestly enhanced. These results suggest that, in order to compare our results
with the experimental data, it is important to perform the lattice QCD Monte Carlo calculation in
the lighter quark mass region.
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Although the BS wave functions are proved to have the universal behavior as Eq. (2.6) at
large distance, its short distance behavior is afflicted with the operator dependence. We can avoid
this subtlety by resorting to the inverse scattering theory, which guarantees the unique existence
of energy-independent, local, hermitian potential. Studies along this line together with the NN
potential measured in differentE and the derivation of the tensor force will be reported elsewhere
[8].
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