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1. Introduction

QCD is the theory of the strong interaction, but nevertheless many results are obtained from
perturbative calculations applicable to a large variety of scattering processes. The success of this
approach is based on the factorization properties of the investigated reactions, which allow one to
introduce distribution and fragmentation functions for quarks and gluons in the case of inclusive,
and quark distribution amplitudes in the case of hard exclusive processes. These universal functions
are common to different processes in all orders of the perturbative expansion. In ongoing and
future experiments the investigation of hard exclusive and semi-exclusive processes will become
the key tool for increasing our knowledge and understanding of the internal and spin structure of
hadrons. Thus for facilitating fully quantitative predictions for these processes the knowledge of
the nonperturbative quark distribution amplitudes is essential. They describe the hadron structure in
terms of valence quark Fock states at small transverse separation and, unlike distribution functions
in inclusive processes, cannot be accessed directly in experiment. Only some indirect insight can
be obtained by measuring physical quantities like the magnetic form factor of the nucleonGM(Q2).
At very large values ofQ2 the electromagnetic form factors of the nucleon can be expressed as a
convolution of the hard scattering kernelh(xi ,yi ,Q2) and the quark distribution amplitude in the
nucleonϕ(xi ,Q2) [1]:

GM(Q2) =
∫ 1

0
[dx]

∫ 1

0
[dy]ϕ?(yi ,Q

2)h(xi ,yi ,Q
2)ϕ(xi ,Q

2)+O(m2/Q2), (1.1)

where[dx] = dx1dx2dx3δ (1−∑3
i=1xi), andQ2 equals the modulus of the squared momentum trans-

fer in the hard scattering process. In this case only the leading twist nucleon distribution amplitude
contributes. In an appropriate gauge,xi (yi) can be interpreted as the momentum fractions carried
by the valence quarks before (after) the hard scattering.

Apart from QCD sum rule determinations, an analytic approach to the distribution ampli-
tude is feasible only for sufficiently large values ofQ2, where the asymptotic formϕ(Q2 → ∞) =
120x1x2x3 [2, 3] is obtained. However, given the logarithmic evolution inQ2 this knowledge is not
really useful at reasonable energy scales, such that a nonperturbative lattice calculation seems to be
the method of choice.

At intermediate values of the momentum transfer (1≤ Q2 ≤ 10GeV2) the electromagnetic
form factors can be calculated from the nucleon distribution amplitudes using lightcone sum rules.
In this case also higher twist terms of the nucleon distribution amplitudes [4, 5, 6, 7] will contribute.
This kinematic region gained a lot of interest in recent years, because new data from JLAB [8, 9, 10,
11] for the well-known electromagnetic form factors of the nucleon contradict common textbook
knowledge, for details see [12] and references therein.

In this paper we want to present the theoretical framework needed to set up a calculation of the
nucleon distribution amplitudes on the lattice and present some preliminary results for the leading
and some next-to-leading twist distribution amplitudes.

2. Theoretical background

We would like to stress once more that the nonperturbative nucleon distribution amplitudes
are needed anytime a process is calculated in which three quarks form a nucleon, e.g., after a hard
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Figure 1: The factorization of the subprocess relevant in the calculations involving the quark distribution
amplitudes of the nucleon

scattering process as displayed in Fig.1. In Minkowski space our starting point for the derivation
of quark distribution amplitudes is the matrix element of a tri-local operator,

〈0|
[
exp

(
ig

∫ z3

z1

Aµ(σ)dσ
µ

)
uα(z1)

]a[
exp

(
ig

∫ z3

z2

Aν(τ)dτ
ν

)
uβ (z2)

]b

×dc
γ (z3) |N(p)〉εabc,

(2.1)
where path ordering is implied for the exponentials,a,b,c are the color indices and|N(p)〉 de-
notes the nucleon state with momentump. We will consider these matrix elements for space-time
separations of the quarks on the light cone withzi = aiz (z2 = 0) and∑i ai = 1.

Using the transformation properties of the fields in eq. (2.1) under Lorentz symmetry and
parity it is possible to rewrite the leading twist contribution in terms of three invariant functionsV,
A andT [14],

(2.1) =
1
4

fN
{
(p· γC)αβ (γ5N)γV(zi · p)+(p· γγ5C)αβ NγA(zi · p)

+(iσµν pνC)αβ (γµ
γ5N)γT(zi · p)

}
,

(2.2)

whereC is the charge conjugation matrix,N the nucleon spinor andfN the nucleon decay constant.
Beyond the largeQ2 limit there are also higher twist contributions, which we do not discuss here.

In momentum space

V(xi) =
∫

V(zi · p)
3

∏
i=1

exp(ixi(zi · p))
d(zi · p)

2π
, V(xi)≡V(x1,x2,x3) (2.3)

the distribution amplitudesV(xi), A(xi) andT(xi) describe the quark distribution inside the nucleon
as a function of the longitudinal momentum fractionsxi . To be precise we want to note that the
distribution amplitudes also depend on the factorization and renormalization scales. Here it is
sufficient to set both scales to the same valueµ.

3
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Since so far it is not possible to access the quark distribution amplitudes directly on the lattice
we consider their moments, which are defined as

V lmn =
∫ 1

0
[dx] xl

1xm
2 xn

3 V(x1,x2,x3) (2.4)

with equivalent definitions for the other distribution amplitudes. Using eq. (2.2) and (2.3) one can
relate these moments of the quark distribution amplitudes to matrix elements of the following local
operators

V ρ l̄ m̄n̄
τ (0) = ε

abc[i lDλ1 . . .Dλl ua
α(0)](Cγ

ρ)αβ [imDµ1 . . .Dµmub
β
(0)]

× [inDν1 . . .Dνn(γ5dc(0))τ ] (2.5)

A ρ l̄ m̄n̄
τ (0) = ε

abc[(i lDλ1 . . .Dλl ua
α(0)](Cγ

ρ
γ5)αβ [imDµ1 . . .Dµmub

β
(0)]

× [inDν1 . . .Dνndc
τ(0)] (2.6)

T ρ l̄ m̄n̄
τ (0) = ε

abc[i lDλ1 . . .Dλl ua
α(0)]

(
C(−iσξ ρ)

)
αβ

[imDµ1 . . .Dµmub
β
(0)]

× [inDν1 . . .Dνn(γξ γ5dc(0))τ ] (2.7)

by

〈0|V ρ l̄ m̄n̄
τ (0)|N(p)〉=− fNV lmnpρ pl̄ pm̄pn̄Nτ(p), (2.8)

〈0|A ρ l̄ m̄n̄
τ (0)|N(p)〉=− fNAlmnpρ pl̄ pm̄pn̄Nτ(p), (2.9)

〈0|T ρ l̄ m̄n̄
τ (0)|N(p)〉= 2 fNT lmnpρ pl̄ pm̄pn̄Nτ(p). (2.10)

The multiindexl̄ m̄n̄ denotes the Lorentz structure given by the covariant derivativesDµ = ∂µ −
igAµ in the local operator whileρ andτ belong to a gamma matrix and a spinor respectively. The
nucleon decay constantfN is normalized here by the choiceV000 = 1.

For a lattice calculation the above equations and operators are converted from Minkowski to
Euclidean space-time, then the techniques known from meson and hadron spectroscopy can be
used to determine the matrix elements. However in the discretized space-time we are faced with
additional obstacles being absent in continuum calculations. Though not mentioned explicitly, the
above equations contain renormalization factors and the results obtained on the lattice should be
converted to an appropriate continuum renormalization scheme such asMS. Due to the reduced
symmetry of the discretized space-time we will have to treat additional mixings of operators with
the same mass dimension which are forbidden in the continuum. Even worse, the discretized theory
furthermore suffers from potential mixing with lower-dimensional operators. So it is important to
notice that there is some freedom to choose especially well-suited operators exploiting the fact that
different operators with distinct multiindices on the left hand side of eqs. (2.8)-(2.10) are related to
the same moments on the right hand side. Hence the first task is to find appropriate combinations
of three-quark operators, for which the unwanted mixing is absent or at least strongly reduced.

3. Irreducible representations of three-quark operators

The matrix elements of the type〈0|O|N〉 (2.8)-(2.10) considered in the previous section refer
to quark distribution amplitudes for the nucleon. However we want to stress that the results derived
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in this section are more general and can be used in any kind of calculation involving local three-
quark operators of the form

O(i)(x) = T(i)
αβγµ1...µn

uα(x)uβ (x)Dµ1 . . .Dµndγ(x), (3.1)

whereT(i) is a tensor that represents the appropriate coefficients. As the actual position of the
covariant derivatives does not influence the following discussion, we will assume that they act on
the last quark unless stated otherwise. Isospin symmetrization will be discussed in detail in the
following section.

These three-quark operators are subject to renormalization and possible mixing under renor-
malization. In order to get quantitative results from lattice simulations it is hence essential to
perform a detailed study of their renormalization and mixing coefficients, preferably in a nonper-
turbative approach. LetObaredenote the lattice regularized, bare three-quark operator andO ren its
renormalized counterpart. They are related by a renormalization matrixZ:

O(i),ren = Zi j O
( j),bare. (3.2)

Operator mixing shows up in non-vanishing off-diagonal elements ofZ. Typically several hundred
independent operatorsO( j) may appear on the right hand side so that an elaborate approach is
needed to gain control of the mixing issue. As in the case of quark-antiquark operators [15] the
symmetry groupH(4) of the hypercubic lattice provides appropriate tools to reduce the dimen-
sion of the problem: One decomposes the operator space into subspaces transforming irreducibly
with respect to the hypercubic group. Mixing under renormalization is then possible exclusively
between equivalent irreducible representations, i.e., between operators that obey exactly the same
transformation laws under the group action. Thus theZ-matrix becomes block diagonal and one
has to care only about the lower-dimensional non-identical blocks, which typically mix an order of
one to ten irreducible operators.

We employ a similar group-theoretical approach for our three-quark operators. However, since
half integer spin is assigned to our operators, we have to use the double cover ofH(4), the so-called
spinorial hypercubic groupH(4) which was studied first by Dai and Song in 2001 [16]. This finite
group contains 768 elements and can be defined by six generators,t, γ, I1, I2, I3 andI4, and a set of
generating equations:

I2
i =−1, Ii I j =−I j Ii tI1 = I1t,

tI2 = I4t, tI3 = I2t, tI4 = I3t,

γI1 =−I3, γI2 =−I2γ, γI4 =−I4γ,

γ
2 =−1, t3 =−1, (tγ)4 =−1.

Given these relations, it can be shown that, apart from the already known representations that are
inherited fromH(4) [18], exactly five further inequivalent irreducible representations exist:τ

4
1 , τ

4
2 ,

τ8, τ
12
1 andτ

12
2 . The superscript denotes their dimension and the subscript numbers inequivalent

irreducible representations of the same dimension.
While the representationτ4

1 describes how spinors and thus quark fields are transforming un-
der group action, Lorentz vectors such as derivatives transform according to the representationτ4

1

5
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inherited fromH(4). Thus one might in principle construct the transformation matrices for three-
quark operators under action of any given group elementG:

O( j),transformed= Gi j O
(i). (3.3)

However, this would again yield matrices of quite unhandy dimension (remember the amount of
independent operators involved), so in a first step we reduced the set of possibly mixing operators
and thereby the dimension of the transformation matrices by a detour viaSO4. Writing the quark
fields with dotted and undotted indices in the chiral Weyl representation [17] we can construct
irreducible representations due to the local homomorphismSU(2)×SU(2) ' SO(4). Each quark
spinor naturally consists of two two-component spinors, and after contraction with Pauli matrices
also the covariant derivatives can be written in anSU(2) representation:Dµ → (Dµσ µ)a

ḃ. For
any given operator, independent symmetrization of dotted and undotted indices projects onto an
irreducibly transforming leading twist operator, e.g.:

uȧubDµdc → uȧub(Dσ)d
ėd

c → u{ȧu{b(Dσ)d
ė}d

c}. (3.4)

Fixing the indices in the above example one can read off twelve independent operators belonging
to oneSO4-irreducible representation. The chirality partners with exchanged dotted and undotted
indices on the quark fields are treated in the same way.

It is now straightforward to construct irreducible representations for the symmetry groupO4 of
the Euclidean continuum. AsO4 = SO4∪ rSO4 with r representing some reflection operation [18],
joining the parity partners of theSO4 irreducible multiplets into one generates anO4 irreducibly
transforming multiplet.

At that point the number of possibly mixing operators is sufficiently reduced to construct their
768 transformation matricesGi j in eq. (3.3). Forming suitable linear combinations with the help of
the characters of the spinorial hypercubic groupH(4) we construct a projectorPα that, applied to
eachO4 irreducible operator multiplet, projects out such operators that are in factH(4)-irreducible:

Pα =
dα

|H(4)| ∑
G∈H(4)

χ
α(G)∗ ·G. (3.5)

Heredα denotes the dimension of theH(4)-irreducible representationτα to be projected on,χα(G)
the character of the group elementG in that representation and|H(4)|= 768 is the group order.

We present two typical examples forH(4) irreducible operators. First we display a subset of a
τ

12
1 irreducible multiplet of operators with one derivative:

O−+D+
1 =−

√
3

2
√

2
u{0̇u{1(Dσ)0

0̇}d
0}−

√
3

2
√

2
u{1̇u{1(Dσ)1

1̇}d
1},

O−+D+
2 =

√
3u{1̇u{1(Dσ)0

0̇}d
0},

O−+D+
3 =−

√
3

2
√

2
u{0̇u{1(Dσ)1

0̇}d
1}−

√
3

2
√

2
u{1̇u{1(Dσ)0

1̇}d
0},

...

O−+D+
12 =−

√
3

2
√

2
u{0u{0̇(Dσ)0}

0̇d0̇}−
√

3

2
√

2
u{1u{1̇(Dσ)1}

1̇d0̇}.

6
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(mass)dimension 9/2 dimension 11/2 dimension 13/2

0 derivatives 1 derivative 2 derivatives

τ
4
1 5 multiplets 3 multiplets

τ
4
2 3 multiplets

τ8 1 multiplet 1 multiplet 3 multiplets

τ
12
1 3 multiplets 3 multiplets 4 multiplets

τ
12
2 4 multiplets 5 multiplets

Table 1: Number of equivalentH(4) irreducible multiplets for three-quark operators with zero to two deriva-
tives (not isospin symmetrized, derivatives acting on the last quark only).

The curly brackets denote total symmetrization in the (un)dotted indices. As a second example we
show operators with two derivatives from one of theτ

12
2 representations:

O++DD+
1 =

5i

4
√

6
u{1u0(Dσ)0

{0̇(Dσ)0
0̇}d

0}− i
√

3

4
√

2
u{1u1(Dσ)1

{0̇(Dσ)1
0̇}d

1}

+
5i

2
√

6
u{1u1(Dσ)1

{0̇(Dσ)1
0̇}d

1},

...

O++DD+
12 =− i

2
√

3
u{0̇u0̇(Dσ){1

0̇(Dσ)0}
0̇d0̇}−

5i

2
√

3
u{1̇u1̇(Dσ){1

1̇(Dσ)0}
1̇d0̇}.

Ordering the multiplets of irreducibly transforming three-quark operators according to their
mass-dimension (number of derivatives) yields table1. This facilitates reading off the important
results because mixing is possible only within one representation. As already mentioned, on the lat-
tice operators of the same representation may additionally mix with those of lower mass dimension,
e.g. involving an extra factor of 1/a:

O(i),ren = Zi j O
( j),bare+Z′ · 1

a
·Obare, lower dim (3.6)

However it is difficult and numerically challenging to factor out the divergent part. Therefore such
operators should be avoided wherever possible or otherwise studied in detail so that the divergence
can be cleanly isolated and finally subtracted from the renormalized operator.

In our approach to the nucleon distribution amplitudes we exclusively use the representations
τ

12
1 for three-quark operators without derivative,τ

12
2 andτ

4
2 for three-quark operators with one and

two derivatives, respectively. Thus we safely circumvent any power divergences in terms of the
lattice spacing.

4. Irreducible representations of the nucleon distribution amplitude operators

In the last section three-quark operators which are suitable for the calculation of matrix ele-
ments on the lattice were derived. The next task is to establish a connection between these three-

7
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quark operators and the quark distribution operators we are actually interested in. Before we give
the corresponding relations, let us consider the additional symmetries among the moments of the
quark distribution amplitudes introduced by the presence of twou-quarks in the nucleon:

V lmn = Vmln, Almn =−Amln, T lmn = Tmln. (4.1)

If we define
φ

lmn = V lmn−Almn+2T lnm, (4.2)

which is a natural combination in our analysis, then the fact that the nucleon has isospin 1/2 implies

T lmn =
1
6
(φ lnm+φ

mnl). (4.3)

With the analogous identities forV andA we can express the moments ofV, A andT in terms of
only one independent distribution amplitudeφ lmn:

V lmn =
1
6

(
2φ

lmn+2φ
mln−φ

nlm−φ
nml

)
, (4.4)

Almn =
1
6

(
−2φ

lmn+2φ
mln−φ

nlm+φ
nml

)
. (4.5)

The combination1 ϕ lmn = V lmn−Almn, often used in QCD sum rule calculations, can easily be
expressed in terms ofφ lmn:

ϕ
lmn =

1
3

(
2φ

lmn−φ
nml

)
. (4.6)

Due to momentum conservation there exists also a connection between lower and higher moments,

φ
lmn = φ

(l+1)mn+φ
l(m+1)n +φ

lm(n+1), (4.7)

allowing us to test our calculation.
Finally we relate the irreducible three-quark operators to the operators for the moments of the

distribution amplitudes obtaining, e.g.,

O+D−+
41 =

1
2

ε
abc

(
−ua

1(D3ub
3)d

c
1 + iua

1(D4ub
3)d

c
1 +ua

1(D1ub
4)d

c
1− iua

1(D2ub
4)d

c
1

)
=

1
8

(
−A 13

1 + iA 14
1 + iA 23

1 +A 24
1 −A 31

1 + iA 32
1 + iA 41

1 +A 42
1

+V 13
1 − iV 14

1 − iV 23
1 −V 24

1 +V 31
1 − iV 32

1 − iV 41
1 −V 42

1

)
,

(4.8)

where the lower index in the nucleon distribution amplitude operators denotes the spinor index and
upper indices are Lorentz indices (see eq. (2.5)-(2.7)). The symmetry in the Lorentz indices on
the right-hand side reflects the leading twist projection of the operator. It is an element of theτ

12
2

representation and hence does not mix with any operators of lower dimension. To construct an
isospin 1/2 operator we use an operator from another, equivalentτ

12
2 representation,

O++D−
65 =

1
2

ε
abc

(
−ua

1ub
1(D3dc

3)+ iua
1ub

1(D4dc
3)+ua

1ub
1(D1dc

4)− iua
1ub

1(D2dc
4)

)
=

1
8

(
T 13

1 − iT 14
1 − i T 23

1 −T 24
1 +T 31

1 − i T 32
1 − iT 41

1 −T 42
1

)
.

(4.9)

1Note that the normalisation conditions ofϕ000 = 1 andφ000 = 3 are different

8
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Combining both operators we obtain an operator of isospin 1/2 with its matrix element given by

−4〈0|O+D−+
41 −O++D−

65 |p〉= N1(p1− ip2)(p3− ip4) fN
(
V010−A010+2T001) . (4.10)

In the same way we deduced the following set of operators used in our analysis of the nucleon
distribution amplitudes moments on the lattice

• 0 derivatives (τ12
1 )

〈0|O12
0 |N(p)〉= fN(p1γ1− p2γ2)N(p),

〈0|O34
0 |N(p)〉= fN(p3γ3− p4γ4)N(p),

〈0|O1234
0 |N(p),〉= fN(p1γ1 + p2γ2− p3γ3− p4γ4)N(p),

• 1 derivative (τ12
2 )

〈0|O12
1 |N(p)〉= fNφ

100[(γ1p1− γ2p2)(γ3p3 + γ4p4)−2p1p2γ1γ2]N(p),

〈0|O34
1 |N(p)〉= fNφ

100[(γ1p1 + γ2p2)(γ3p3− γ4p4)−2p3p4γ3γ4]N(p),

〈0|O1234
1 |N(p)〉= fNφ

100(γ1p1− γ2p2)(γ3p3− γ4p4)N(p),

• 2 derivatives (τ4
2)

〈0|O1234
2 |N(p)〉= fNφ

110[p1p2γ1γ2(p3γ3− p4γ4)+ p3p4γ3γ4(p1γ1− p2γ2)]N(p)

with analogous expressions for other moments. The operatorsOk denote isospin 1/2 combinations
with k derivatives carrying an implicit spinor index. For the 0th moment we use only those operators
which do not require non-zero spatial momenta. In the case of higher moments the advantage
of using irreducible representations is paid by the requirement of non-zero spatial momenta. In
the case of one derivative we usedp1 6= 0 and for two derivativesp2, p3 6= 0. It is important to
notice that for the 0th and 1st moments we can use several operators thus improving our statistics.
Unfortunately for the 2nd moment we have to use operators from theτ

4
2 representation to avoid

mixing with lower-dimensional operators and hence we cannot increase our statistics in the same
way.

5. Unrenormalized results for the nucleon distribution amplitudes

After these preparatory works we are finally able to obtain the desired moments of nucleon
distribution amplitudes. We performed a lattice calculating of the above matrix elements, using
parity and momentum projection for the appropriately chosen spatial momentum combinations.
For the interpolating operator of the nucleon field we choseNτ = εabc(uaCγ5db)uc

τ leading to e.g.

〈γ1γ4O
12
1 (t) ¯N (0,~p)〉= fNφ

100
√

ZN(~p)
p1(E(~p)(mN +E(~p))−2p2

2 + p2
3)

E(~p)
exp[−E(~p)t] (5.1)

where parity projection is implied. The normalization constantZN(p) can be extracted from the
usual nucleon 2-point correlation function

〈N (t,~p) ¯N (0,~p)〉= ZN(~p)
mN +E(~p)

E(~p)
exp[−E(~p)t]. (5.2)

9
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Figure 2: Nucleon decay constantfN (upper plot) and the normalization constants−λ1 and λ2 of the
next-to-leading twist distribution amplidtudes (lower plot). All displayed results are unrenormalized.

Since our operators for the moments of the nucleon distribution amplitudes are local we apply
smearing only to the nucleon interpolating operator at the source. The two-point nucleon correlator
is smeared both at source and sink. Due to this procedure the location of the effective mass plateaus
is different for the two-point nucleon correlator and the two-point correlators used to determine the
moments. Hence we do not calculate the ratios of these operators, but perform fully correlated
fits to the correlators themselves choosing the fit ranges to match the effective mass plateaus. We
use the pion masses determined by the QCDSF collaboration and set the scale with the Sommer
parameterr0 = 0.467fm.

For the sake of flexibility we perform a two stage analysis. In the first step we calculate two-
point functions of general 3-quark operators schematically given by

〈0|εabc[Dλ1 . . .Dλl u]aα [Dµ1 . . .Dµmu]b
β
[Dν1 . . .Dνnd]cγ ¯Nτ(p)|0〉, (5.3)

with l + m+ n ≤ 2. In a second step, these general operators can be used to calculate different
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Figure 3: φ001 (upper plot) andφ020 (lower plot) moments of the leading twist nucleon dsitribution ampli-
tude. All displayed results are unrenormalized.

matrix elements, in our case the irreducible combinations relevant for the moments of nucleon
distribution amplitudes.

Although not discussed here, the calculation of moments of higher twist distribution ampli-
tudes follows the same procedure as for leading twist. Thus using the general three-quark operators
from step one, we can extract, e.g., the normalization constantsλ1 andλ2 of the next-to-leading
twist distribution amplitudes, which are also related to matrix elements of local three-quark opera-
tors [4].

Some of our results along with simple linear chiral extrapolations are presented in Figs.2and3.
In Fig. 2 (upper plot) we show the normalization constant of the nucleon distribution amplitude as
function of the pion mass. The analysis was done on two different volumes, 163×32 and 243×48.
We observe small finite size effects on the 163×32 lattice for the smallest pion mass. In the lower
plot of Fig. 2 we give−λ1 andλ2, the normalization constants of the next-to-leading twist distri-
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bution amplitudes. Compared to the leading twist case, we observe more pronounced finite size
effects for these quanitites.

In Fig. 3 we give representative results for two of the higher moments,φ001 (upper plot) and
φ020 (lower plot), as a function of the pion mass. The data for the 163×32 and 242×48 lattices
do not seem to be completely consistent. Improving statistics, we are currently examining this
behavior, which is observed only for some of the higher moments.

The results obtained on the 243×48 lattices are extrapolated linearly to the chiral limit. The
resulting values for the normalization constantsfN, λ1 and λ2 are close to the QCD sum rules
calculations [19, 20], but after renormalization we expect them to be lowered by approximately
twenty percent.

6. Renormalization

All results presented so far refer to unrenormalized lattice calculations. The important step
of renormalization for the three-quark operators used is in progress and will be discussed in a
forthcoming paper, while here we will only sketch the keystones. For the renormalization we
adopt a nonperturbative procedure, analogous to the well-establishedRI−MOM scheme Martinelli
et al. introduced for quark-antiquark operators [21]. We contract our isospin symmetrized and
color antisymmetrized three-quark operators with three quark momentum sources on the lattice
and calculate a correlation function of the following kind:

G(i)(p,q, r)abc
αβγ

=
∫

dudvdwdxei(r·u+p·v+q·w)e−i(p+q+r)·x〈ū(u)a
α ū(v)b

β
d̄(w)c

γ ·O(i)(x)〉, (6.1)

with α, β andγ denoting spinor indices andp, q andr being the incoming quark momenta. The
gauge is fixed to Landau gauge. After amputating the external legs, we are left with a three-quark
vertexΓ that contains all radiative corrections:

G(i)(p,q, r)abc
αβγ

= Γ(i)(p,q, r)α ′β ′γ ′S(−r)α ′αS(−p)β ′β S(−q)γ ′γε
abc. (6.2)

Imposing a suitable renormalization condition at the scaleµ2 = (p2 + q2 + r2)/3 we obtain the
renormalized vertex

Γ(i),ren(p,q, r; µ) = ZO
i j (µ) ·Z−3/2

q (µ) ·Γ( j)(p,q, r). (6.3)

The RI−MOM renormalization matrixZO
i j is then converted to theMS scheme using one loop

continuum perturbation theory. Finally we can perform a renormalization group extrapolation to
any renormalization scaleµ we like.

As an outlook and in order to demonstrate how well this procedure works, we want to present
a consistency check for the zeroth and first moments of our nucleon distribution amplitudes. Due
to momentum conservation the sum of the three first moments is equal to the zeroth moment (cf.
(4.7)):

φ
100+φ

010+φ
001 = φ

000 = 3. (6.4)

One can add up the bare first lattice moments and will receive a value of 2.60, which is incompatible
with the above sum rule (fig.4, dashed line). Incorporating the three-quark operator renormaliza-
tion and especially the mixing matrix elements (we have to deal with a 3×3 matrix in this case)
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Figure 4: Consistency check for the zeroth and first moments. Dashed line: sum of the bare first moments.
Full line: renormalized sum of the first moments. The moments renormalized at different scales fit the
theoretical constraint very well.

we obtain very good matching. We would like to emphasize that the well reproduced mean value
of 3.00 results from a renormalization at different scales and that the error bars containing uncer-
tainties in theφs as well as in theZs are a rather conservative estimate at this stage. This check
makes us confident that our preliminary results tend into the right direction and deserve further
investigations.

7. Conclusions and perspectives

In this paper we have discussed how moments of nucleon distribution amplitudes can be cal-
culated on the lattice. After rewriting the lightcone expressions in terms of local matrix elements,
we focused on operators that are well-behaved even in the context of reduced lattice symmetries.
The representations of the spinorial hypercubic group provide the tool to derive irreducible sets
of three-quark operators that are suited to control mixing and renormalization. After appropriate
isospin symmetrization we expressed the operators for the moments of the nucleon distribution
amplitudes in terms of these irreducible representations and showed preliminary unrenormalized
results for various moments of the distribution amplitudes. The renormalized results for the first
moments are in good agreement with a sum rule. A comprehensive and detailed study of the three-
quark operator renormalization is in progress right now.
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