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1. Introduction

Magnetic moment is a fundamental property of particles. It determines the dynamical response
of a bound system to a soft external stimulus, and provides valuable insight into internal strong in-
teraction structure. Efforts to compute the magnetic moment on the lattice come in two categories.
One is the form factor method which involves three-point functions [1, 2, 3, 4, 5, 6, 7]. The other
is the background field method using only two-point functions (mass shifts) [8, 9, 10, 11]. The
form factor method requires an extrapolation to zero momentum transferGM(Q2 = 0) due to the
non-vanishing minimum discrete momentum on the lattice [12]. The background field method, on
the other hand, accesses the magnetic moment directly and cleanly but is limited to static prop-
erties due to the use of a static field. Here we report a calculation of the vector meson magnetic
moments in this method, in parallel to a recent calculation in the form factor method [13]. It is
an extension of our earlier work on baryon magnetic moments [14] and electric [15] and magnetic
polarizabilities [16] in the same method.

2. Method

For a particle of spins in uniform fields,

E± = m±µB (2.1)

where the upper sign means spin up and the lower sign means spin-down relative to the magnetic
field, andµ = g e

2m s. We use the following method to extract the g factors,

g = m
(E+−m)− (E−−m)

eBs
. (2.2)

In order to place a magnetic field on the lattice, we constructan analogy to the continuum case.
The fermion action is modified by the minimal coupling prescription

Dµ = ∂µ + gGµ + qAµ (2.3)

whereq is the charge of the fermion field andAµ is the vector potential describing the background
field. On the lattice, the prescription amounts to multiplying a U(1) phase factor to the gauge links.
ChoosingAy = Bx, a constant magnetic field B can be introduced in thez-direction. Then the phase
factor is in the y-links

Uy → exp(iqa2Bx)Uy. (2.4)

The computational demand can be divided into three categories. The first is afully-dynamical
calculation. For each value of external field, a new dynamical ensemble is needed that couples
to u-quark (q=1/3), d-and s-quark (q=-2/3). This requires aMonte Carlo algorithm that can treat
the three flavors separately. Quark propagators are then computed on the ensembles with matching
values. This has not been attempted. The second can be termedre-weighting in which a perturbative
expansion of action in terms of external field is performed (see Ref. [17] for a calculation of the
neutron electric polarizability in this method). The thirdis U(1) quenched. No field is applied
in the Monte-Carlo generation of the gauge fields, only in thevalence quark propagation in the
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given gauge background. In this case, any gauge ensemble canbe used to compute valence quark
propagators.

We use standard Wilson actions on 244 lattice atβ = 6.0, both SU(3) and U(1) quenched,
and six kappa valuesκ=0.1515, 0.1525, 0.1535, 0.1540, 0.1545, 0.1555, corresponding to pion
mass of 1015, 908, 794, 732, 667, 522 MeV. The critical value of kappa isκc=0.1571. The strange
quark mass is set atκ=0.1535. The source location for the quark propagators is (x,y,z,t)=(12,1,1,2).
We analyzed 87 configurations. The following five dimensionless numbersη = qBa2=+0.00036,
-0.00072, +0.00144, -0.00288, +0.00576 give four small B fields (two positive, two negative) at
eBa2=-0.00108, +0.00216, -0.00432, +0.00864 for both u and d (ors) quarks. These field values
do not obey the quantization condition for periodicity since the values given by the condition cause
too large a distortion to the system. To minimize the boundary effects, we work with fixed (or
Dirichlet) b.c. in the x-direction and largeNx, so that quarks originating in the middle of the lattice
have little chance of propagating to the edge. To eliminate the contamination from the even-power
terms, we calculate mass shifts both in the fieldB and its reverse−B for each value ofB, then take
the difference and divide by 2. Another benefit of repeating the calculation with the field reversed
is that by taking the average ofδm(B) andδm(−B) in the same dataset, one can eliminate the odd-
powered terms in the mass shift. The coefficient of the leading quadratic term is directly related to
the magnetic polarizability [16].

3. Interpolating field

For theρ+ meson, we use the polarized forms

η± =
1√
2

d̄ (∓γx − iγy)u =
1√
2

(ηx ± iηy) (3.1)

The interaction energiesE± are extracted from the correlation functions

〈η±η†
±〉 =

1
2

[

〈ηxη†
x 〉± i

(

〈ηyη†
y 〉− 〈ηxη†

y 〉
)

+ 〈ηyη†
y 〉

]

. (3.2)

Eq. (3.2) implies that the polarization comes from the imaginary parts of the off-diagonal correla-
tion between x and y components. These imaginary parts are zero in the absence of the external
field. Other vector mesons have similar forms with differentquark contentρ− = ūd, ρ0 = ūu− d̄d,
φ = s̄s, K∗+ = s̄u, K∗− = ūs, K∗0 = d̄s− s̄d. By symmetry, the magnetic moments are expected to
be related by

µρ− = −µρ+ , µρ0 = 0; (3.3)

and
µK∗− = −µK∗+ , µK∗0 small. (3.4)

These relations are borne out numerically in our calculations.

4. Results and discussion

Fig. 1 displays a typical effective mass plot for both the mass and the mass shifts. Good
plateaus exist for all six quark masses. Our results are extracted from the time window 10 to 13.
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Figure 1: Effective mass plot for theρ+ mass (left) at zero field and mass shifts (right) at the weakest
magnetic field in lattice units, corresponding to the heaviest and lightest quark masses.

Figure 2: Mass shifts for theρ+ meson as a function of the magnetic field in lattice units at the six quark
masses (lightest in the lower right corner). The slope of themass shift at each quark mass gives the g factor
corresponding to that quark mass. The line is a fit using only the two smallest B values.
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Fig. 2 shows the mass shifts, defined asδ = g(eBs) from Eq. (2.2), as a function of the field for the
ρ+ meson. The slope gives the g-factor. There is good linear behavior going through the origin for
all the fields when the quark mass is heavy, an indication thatcontamination from the higher-power
terms has been effectively eliminated by the(δ (B)−δ (−B))/2 procedure. This is also confirmed
numerically by the smallness of intercept as shown in the same figure. At the lightest quark mass,
there is a slight deviation from linear behavior at the stronger fields. For this reason, we only use
the two smallest field values to do the linear fit at all the quark masses.

Fig. 3 shows the g-factors for the vector mesons as a functionof pion mass squared. The lines
are simple chiral fits using the ansatzs

g = a0 + a1mπ , (4.1)

and
g = a0 + a1mπ + a2m2

π . (4.2)

They serve to show that there is onset of non-analytic behavior as pion mass is lowered, so a linear
extrapolation is probably not a good idea. But overall the g-factors have a fairly weak quark mass
dependence. At large quark masses, the g-factor ofρ+ approaches 2, consistent with a previous
lattice calculation using the charge-overlap method [18].Our results forρ+ are slightly higher than
those from the form factor method (see Fig.8 in [13]). The results confirmed thatgρ− = −gρ+ and
gK∗− = −gK∗+ . We confirmedgρ0 = 0 numerically (not shown). The results also show that as far
as g-factors are concerned theρ mesons are quite similar to their strange counterpartsK∗ mesons.

Note that the extracted g-factors are in the particle’s natural magnetons. To convert them into
magnetic moments in terms of the commonly-used nuclear magnetons (µN), we need to scale the
results by the factor 938/M whereM is the mass of the particle measured in the same calculation at
each quark mass. Fig. 4 shows the results forρ+ andK∗+. The different quark-mass dependence
betweenρ+ andK∗+ mostly comes from that in their masses that are used to convert the g-factors to
magnetic moments. The values at the chiral limit extrapolated from Eq. (2.2) areµρ+ = 3.25(3)µN

andµK∗+ = 2.81(1)µN . There is no experimental information. Compared to the formfactor method
(see Fig.7 in [13]), our results are again a little higher. Atthe strange quark mass point (the 3rd data
point from the left), the two coincide to give a prediction for the magnetic moment of theφ(1020)
meson,µφ = 2.07(7)µN .

Fig. 5 shows the results forK∗0. Our results confirm the expectation thatµK∗0 is small. It is
positive when the d-quark is heavier than the s-quark, exactly zero when they are equal, and turns
negative when the d-quark is lighter than the s-quark. The same behavior has been observed in the
form factor method (see Fig.11 in [13]).

5. Conclusion

In conclusion, we have computed the magnetic moment of vector mesons on the lattice using
the background field method and standard lattice technology. Our results are consistent with those
from the form factor method. There is no experimental information so the lattice results can serve
as first-principles predictions. The calculation can be improved by providing a full account of
systematic errors present in the results, such as finite-volume effects. In addition, there is a need to
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Figure 3: G-factors for theρ± (left) andK∗ (right) mesons as a function of pion mass squared. The 2 lines
are chiral fits according to Eq. (4.1) (dashed), Eq. (4.2) (dotted).

Figure 4: Magnetic moments (in nuclear magnetons) forρ+ andK∗+.

push the calculations to smaller pion masses so that reliable chiral extrapolations can be applied.
Nonetheless, our results demonstrate that the method is robust and relatively cheap. Only mass
shifts are required. This may facilitate the push to smallerpion masses, perhaps with the help
of chiral fermions (overlap, domain-wall, twisted mass, ...). Finally, we await fully-dynamical
background-field calculations in order to see the effects ofthe quenched approximation.
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Figure 5: Magnetic moments (in nuclear magnetons) forK∗0.
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