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amasqtad
u/d L/a L mDWF

π #

fm MeV
0.05 20 2.52 761 425
0.04 ” ” 693 350
0.03 ” ” 594 564
0.02 ” ” 498 486
0.01 ” ” 354 656
0.01 28 3.53 353 270

Figure 1: Lattice parameters used in this work.
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Figure 2: Moments of parton distributions.

1. Introduction

Lattice field theory provides a precise definition of nucleon structure observables as well as a
numerical means for evaluating them non-perturbatively. Here we focus on the nucleon generalized
parton distributions. This set of observables contains the parton distributions and form factors as
well as quantities that determine the transverse distribution of quarks within the nucleon and the
decomposition of the nucleon spin into quark and gluon degrees of freedom. To perform these cal-
culations, we use a mixed action consisting of domain wall valence quarks on improved staggered
sea quark configurations provided by the MILC collaboration [1]. The details of this work have
been published in Refs. [2], [3], and [4] and are briefly summarized in Fig. [1]. In this proceed-
ing, we examine the systematic errors related to the determination of matrix elements from lattice
correlation functions as well as the extrapolation of lattice results to the physical quark masses.

2. Moments of Parton Distributions

As theorists improve algorithms and as the computing resources dedicated to lattice QCD
calculations continue to grow, we can begin to contemplate precise calculations of the low non-
singlet moments of the nucleon parton distributions. This will require control of a variety of sources
of error. The calculation of any observable requires a study of the volume, lattice spacing, and
quark mass dependence. Additional sources of error arise depending on the observable and choice
of action. For the calculation of moments of parton distributions, the additional errors are caused by
matching correlation functions calculated on the lattice to functional forms derived or motivated by
transfer matrix arguments as well as errors due to the renormalization of the operators themselves.
Our previous work examined the volume and quark mass dependence of the axial charge [5] and
the quark mass dependence of all the low moments [4] and the generalized form factors [6].

2.1 Correlation Functions

Simple lattice actions admit a transfer matrix formalism, which allows one to rigorously re-
late lattice correlation functions and quantum mechanical matrix elements. Domain wall fermions
have a transfer matrix in the full five-dimensional space, however, that does not guarantee positive
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Figure 3: Nucleon two-point correlator and fit.
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Figure 4: Nucleon three-point plateau and fit.
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Figure 5: Ground state mass for all fits.
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Figure 6: Lowest oscillating mass for all fits.

definite correlation functions in four dimensions. 1 This results in clear oscillations in correlation
functions, as shown in Figs. [3] and [4]. Lacking a theoretical derivation of an effective four-
dimensional transfer matrix, we consider the following phenomenological forms, which include
the standard positive-definite contributions as well as oscillating contributions.

C2pt(t) = A0 exp(−M0t)+A1 exp(−M1t)+B0(−1)t exp(−N0t) (2.1)

C3pt(t) = O00 +O10 cosh((M1 −M0)t)+P00(−1)t cosh((N0 −M0)t) (2.2)

Figures [3] and [4] show fits to Eqs. [2.1] and [2.2], respectively, for the case mπ = 761 MeV. To
test this functional form, we fit 12 nucleon two-point correlation functions. The resulting ground
state and lowest oscillating state masses are shown in Figs. [5] and [6] respectively, again for
mπ = 761 MeV. There is clear agreement for M0, N0, and M1 (not shown) for each nucleon chan-
nel considered, indicating universal values for the physical masses, as expected, and also for the
oscillating mass. Therefore we employ this fitting strategy for all the moments of parton distribu-
tions presented here and will extend this method to the generalized form factors in a future work.

1Mixed action calculations in general suffer from a lack of unitarity, despite the choice of valence action.
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Figure 7: gA and heavy baryon fit.
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Figure 8: gA and finite range regulator fit.

2.2 Chiral Perturbation Theory

There is a variety of methods to perform chiral extrapolations of moments of parton distribu-
tions, which should all agree at light enough quark masses, but will, however, systematically differ
when applied at the quark masses currently used in lattice calculations. Lattice calculations at the
physical quark masses will of course eliminate the need for chiral extrapolations, however, in the
interim, we examine a variety of these methods with the ultimate goal of systematically comparing
all such methods.

The axial charge and the pion decay constant are low energy constants that are common to
all chiral peturbation theory expressions for the moments of parton distributions. Therefore any
successful extrapolation method must account for both observables. First we examine two methods
that are known to fail. The first is standard heavy baryon chiral perturbation theory and the second
is the same expression but with a finite range regulator [7]. Fits to the axial charge for each are
shown in Figs. [7] and [8]. The figures show the error band for the most conservative fit, including
just the lightest three pion masses. There is a clear discrepancy between the experimental result
and the extrapolated lattice result. Additionally, varying the fit range from mπ < 600 MeV to
mπ < 800 MeV shows a systematic variation.

The above results indicate that the simplest chiral perturbation theory expressions fail to con-
verge for pion masses in the range considered here. A common alternative is to include the Delta in
the effective theory and this has been shown to successfully describe the axial coupling in Refs. [5]
and [8]. Here we describe a simpler alternative [4] that seems to correctly reproduce the experimen-
tal values for gA, fπ , and other low moments of parton distribution functions. We start with the stan-
dard chiral perturbation expressions for the various moments of parton distributions [9, 10]. The
renormalization scale µ is eliminated in favor of a dimensionless quantity, α , by setting µ = α

◦
f .2

The values of gA and fπ in the chiral limit occur in the expressions for the moments, but always in
the next-to-leading-order (NLO) term. In order to eliminate the need for multiple combined fits,
we can eliminate the chiral limit values of all observables that occur in the NLO terms in favor of

2The chiral limit values of gA, fπ , and moments like 〈x〉 are denoted by ◦g,
◦
f , and

◦
〈x〉. Additionally, explicit labels

of π are dropped in Eqs. [2.3,2.4,2.5].
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Figure 9: fπ and self-consistent fit.
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Figure 10: gA and self-consistent fit.
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Figure 11: 〈x〉u−d and self-consistent fit.
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Figure 12: 〈x〉∆u−∆d and self-consistent fit.

their lattice values at the corresponding pion mass. 3 This simplifies the fits and does not change
the chiral expressions to the order at which we are working. The resulting expressions are given
below.

〈x〉(1+(3g2 +1)m2/(4π f )2 ln(m2/(α f )2)) =
◦
〈x〉+ cx(α)m2 (2.3)

g(1+(2g2 +1)m2/(4π f )2 ln(m2/(α f )2)) = ◦g+ cg(α)m2 (2.4)

f (1+m2/(4π f )2 ln(m2/(α f )2)) =
◦
f + c f (α)m2 (2.5)

Each of Eqs. [2.3,2.4,2.5] is an independent simple linear fit for a chiral limit value and a counter-
term. To plot a moment as a smooth curve that corresponds to these fits, one first solves the
transcendental Eq. [2.5] for f , then the cubic equation Eq. [2.4] for g, and then the linear Eq. [2.3]
for 〈x〉. As examples, the resulting fits for fπ , gA, 〈x〉u−d , and 〈x〉∆u−∆d are shown in Figs. [9-12].
In each case we find agreement, within the statistical errors, between the chiral extrapolation and

the experimental measurement. In Fig. [2] we collect these results along with the lowest transver-
sity moments in order to highlight the genuine potential for predictions of transversity distributions
from lattice QCD calculations. In this figure, we normalize each result to the experimental measur-

3For similar ideas, see also Refs. [11, 12, 13, 14, 15, 16, 17, 18].
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Figure 13: C20(t) and heavy baryon fit. Figure 14: C20(t) and covariant fit.

ment where available; otherwise we normalize by the lattice calculation. For each observable, the
leftmost point is the lattice calculation and the rightmost point is the experimental measurement.

3. Generalized Form Factors

The low non-singlet moments of the nucleon parton distributions serve as benchmark calcu-
lations: as the precision for the moments increases, so does the confidence in the results for the
generalized form factors. Extensive results relating to the transverse structure and spin decom-
position as well as several comparative studies of chiral perturbation are given in Ref. [6]. Here
we focus on one example of the application of chiral perturbation theory to the generalized form
factor, C20. As for the parton distributions, there are several varieties of effective field theory
methods available to extrapolate both the pion mass and momentum, t, dependence of generalized
form factors. Figures [13] and [14] show our results for the C20 form factor and the fits to heavy
baryon [19, 20] and covariant [21] chiral perturbation theory. These results illustrate again the
benefits of examining multiple methods of chiral extrapolations.

4. Conclusions

Given the scale of computing resources estimated in the near future, it is likely that the sim-
plest aspects of nucleon structure will be calculated with quantitatively controlled errors. This will
require a concerted effort to control all sources of errors in our calculations. We examine here
the traditional sources of error associated with extracting matrix elements from lattice correlation
functions as well as several varieties of chiral extrapolation methods. Though the simplest methods
still fail to correctly accomodate the current lattice results and reproduce the experimental mea-
surements, we find that the self-consistent replacement of the chiral limit values of gA, fπ , and the
moments 〈xn〉 with the correpsonding lattice results appears to improve convergence in all cases
that can be compared with experimental results. Additionally, we illustrate the potential to examine
not only the pion mass dependence but also the momentum dependence of form factors using chiral
perturbation theory.
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