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1. Introduction

Despite many efforts to accurately determine the transition temperatureTc in finite temperature
QCD, the final answer is still open. The problem is that the lattice data need to be extrapolated to the
continuum limit and to the physical quark mass. Indeed, recent work of the RBC-Bielefeld [1] and
the Wuppertal group [2], using different versions of staggered fermions, report results forTc, which
differ by more than 10%. (See also the plenary talks of Karschand Fodor in this volume.) To settle
this issue, alternative calculations, preferably using different fermionic actions, are demanded.

In this talk we shall present results forTc from Nf = 2 flavors of nonperturbatively improved
Wilson fermions. (For similar work see [3] and the talk of Namekawa in this volume.) Furthermore,
we shall report results for the screening mass, which is controversial as well.

We use the plaquette action. The fermionic action reads

SF = S(0)
F −

i
2

κ gcswa5∑
s

ψ̄(s)σµνFµν(s)ψ(s) , (1.1)

whereS(0)
F is the standard Wilson action, andcSW is determined nonperturbatively [4]. Here we

report preliminary results on 243 × 12 lattices atβ = 5.29, and use our earlier results on 163 × 8
at β = 5.2, 5.25 and 243 × 10 atβ = 5.2 [5, 6]. The transition temperature was determined for
lattice spacinga ranging from 0.17r0 to 0.23r0, and the pion massr0mπ varying between 1.3 and
2.7. The lattice spacing and pion mass has been determined from theT = 0 results obtained by the
QCDSF-UKQCD collaboration (see e.g. [7]).

2. Critical temperature

We use the Polyakov loop susceptibilityχL to computeTc. In Fig. 1 we show our results on the
243×12 lattice. The critical value ofκ , κt , is identified as a point, whereχL reaches its maximum.
Applying a Gaussian fit in the vicinity of the maximum we findκt = 0.13589(6). Respective value
of Tcr0 is 0.487(6)

To determineTc in the continuum limit and at the physical pion mass we fit the mass and
cut-off dependence by

r0Tc(r0mπ ,1/Nt) = r0Tc(0,0)+cN ·
1

N2
t

+cm · (r0mπ)d (2.1)

with d = 1.08, assuming that the transition is of second order in the chiral limit and is in the
universality class of the 3d O(4) spin model. Note that a first order transition at the physicalquark
masses is not fully excluded [8]. In that cased = 2. We treat the difference between the two fits
with d = 1.08 andd = 2 as a systematic error. We also considered an extrapolationof the form

r0Tc(r0mπ ,a/r0) = r0Tc(0,0)+ca ·

(

a
r0

)2

+cm · (r0mπ)d . (2.2)

Again, the difference between (2.1) and (2.2) was taken as a systematic error.
Our results are presented in Fig. 2, where we show the fit function (2.1) for Nt = 8,10,12

andNt = ∞. It turns out that the coefficientscN (respectivelyca) andcm are strongly correlated.
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Figure 1: The Polyakov loop susceptibility from the 243×12 lattice.

The error on (e.g.)cN is approximately 50%, so that the scaling violations might be significantly
smaller than displayed in the figure. At present only the result in the physical limit can be trusted
entirely. In the continuum limit and at the physical pion mass we obtain

r0Tc(r0mph
π ,0) = 0.438(6)(+13

−7 ) , (2.3)

where the first error is statistical and the second one systematic.

For comparison we also show the fit function of [1]. It would beconsistent with our results
(within the error bars) ifcN = 0. The result of our fit (2.1) is 2σ away from that value.

As we said already, we used the Polyakov loop susceptibilityto computeTc. Another observ-
able, the chiral susceptibility, determined from the low lying eigenmodes of the valence overlap
Dirac operator, was computed on our 243 × 10 lattice in the parallel talk of V. Weinberg in this
volume. The preliminary conclusion was that the respectivetransition temperature is shifted to a
lower value as compared to the Polyakov loop susceptibility. This observation is in agreement with
the findings of Ref.[2].

3. Screening masses at T > Tc

The study of free energies of static quarks in the high temperature phase is important for under-
standing of the fate of charmonia aboveTc, as well as for checking the validity of high temperature
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Figure 2: The critical temperature. The solid lines show results of the fit function (2.1). The blue line shows
the fit of [1].

perturbation theory. The free energy in the different colorchannels is given by [9]:

e−F1(R,T)/T =
1
3
〈 TrL†(x)L(y) 〉 (3.1)

e−F8(R,T)/T =
1
8
〈 TrL†(x) TrL(y) 〉−

1
24

〈 TrL†(x)L(y) 〉

e−F6(R,T)/T =
1
12

〈 TrL(x) TrL(y) 〉+
1
12

〈 TrL(x)L(y) 〉

e−F∗
3 (R,T)/T =

1
6
〈 TrL(x) TrL(y) 〉−

1
6
〈 TrL(x)L(y) 〉

The above definitions are not explicitly gauge invariant. Itwas argued in Ref. [10] that a gauge
invariant result can be obtained after proper gauge fixing. Although a rigorous proof is still lacking
and both definitions (3.1) and gauge invariance were questioned in Ref. [11] and Ref. [12], respec-
tively, we, as most of other authors, choose here the Coulombgauge to study potentials determined
by eqs. (3.1). An iterative gauge fixing algorithm with one gauge copy has been applied. It is known
that in the Coulomb gauge some gauge noninvariant quantities, e.g. field propagators, suffer from
the Gribov problem. To check for the effect of Gribov copies we looked at three copies on a subset
of our configurations but found no effect. Still, further, more extensive, checks of these effects are
necessary. In particular, a more effective simulated annealing algorithm should be applied.

To improve the signal to noise ratio we used a hypercubic blocking procedure [13]. This
reduced the statistical errors by about a factor of three.
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We applied the usual fitting function to describe the static potentials as functions ofR at large
RT:

Vi(R,T) ≡ Fi(R,T)−Fi(∞,T) = −Ci
αi(T)

R
e−mDi(T)R (3.2)

(i = 1,3,6,8), whereαi(T) andmDi(T) are fit parameters, andCi is the Casimir factor.
Previous studies inNf = 2 lattice QCD were performed with staggered fermions [14] aswell as

with improved Wilson fermions [15], in both cases on lattices withNt = 4. In Ref. [14] results were
presented formπ/mρ = 0.7 and temperatures up toT/Tc = 4. These authors fitted the screening
massmD, extracted from the singlet static potential by means of (3.2), in terms of the two-loop
perturbative expression times a constantA to allow for nonperturbative corrections:

mD

T
= A

(

1+
Nf

6

)1/2

gtwo−loop(T). (3.3)

They foundA≈ 1.4, to be compared withA = 1 in perturbation theory.
In Ref. [15] approximately the same values ofmπ/mρ (mπ/mρ = 0.65,0.80) and same temper-

ature range were explored. The authors confirmed Casimir scaling for VM(R,T), i.e. independence
of αi(T) andmDi(T) on i. Furthermore, they found the phenomenological relation:

mD

T
=

(

1+
Nf

6

)1/2
√

4πα(T) (3.4)

Comparison with results of Ref. [14] revealed agreement forα(T), but 20% deviation formD(T).
So far the disagreement ofmD(T) is unclear. One possible reason is that in both cases lattices with
large lattice spacing were used. Thus our result obtained onlattice with small lattice spacing can
shed some light on this problem.

Our calculations of the static potentials are performed on 163 ×8 lattice atT/Tc = 1.27, the
highest available temperature. In Fig. 3 we compare our result for V1(R,T) with that of Ref. [15].
We find good agreement forRT> 0.5. The disagreement at smaller distances might be partiallydue
to breaking of rotational invariance and HYP smearing of thedata of Ref. [15]. Similar agreement
was found for other color channels. Thus we confirm the observations made in [15], i.e Casimir
scaling and phenomenological scaling (3.4).

4. Conclusions

We computedTc for Nf = 2 with improved Wilson fermions on lattices withNt = 8,10,12 and
performed a continuum and chiral extrapolation. The physical value ofr0Tc was found to be in
agreement with both the RBC-Bielefeld and Wuppertal results within the error bars.

The screening masses atT/Tc ≈ 1.3 are found in full agreement with WHOT-QCD results [15],
confirming disagreement with the results of staggered fermions [14], as well as Casimir scaling of
Vi(R,T) and phenomenological scaling ofmD(T).
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Figure 3: Comparison with [15] for the singlet potential.
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