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We show that the degrees of freedom associated with magneticmonopole– and vortexlike gluonic

configurations make a strong contribution to the anomaly of the energy–momentum tensor of

Yang–Mills theory in the deconfinement phase immediately above the critical temperature. As is

well known in zero–temperature Yang–Mills theory, the monopoles and vortices are constituents

of a generic gluonic object in which the two neighbor monopoles are connected together by a

segment of vortex string. Our results provide evidence thatthe monopole-vortex chains in SU(2)

gauge theory and their SU(3) counterparts, the monopole-vortex nets, are thermodynamically

relevant degrees of freedom in the gluonic plasma.
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1. Introduction

The properties of thermal quark–gluon plasma in QCD have attracted great interest in recent
years [1, 2]. The plasma can be studied by both heavy–ion collision experiments and numerical
lattice simulations. The conventional theoretical approach to thermal plasma is to treat it, in a zero
approximation, as a gas of free gluons and quarks supplemented with perturbative corrections. On
the theoretical side, the bulk characteristics of the plasma such as pressure and energy density can
then be represented in terms of perturbative series in the effective coupling constantg2(T ). The
perturbative predictions for bulk quantities turn to be in reasonable agreement with the available
lattice data [2] for sufficiently high temperatures.

On the other hand, some particular properties of the plasma such as viscosity [3] indicate that
in the zero approximation the plasma at temperatures slightly above the critical temperatureTc can
be considered as an ideal liquid rather than an ideal gas. There is not yet a coherent picture that
unifies both perturbative and nonperturbative features of the QCD plasma.

It was speculated in Refs. [4, 5] that there is a magnetic component of Yang-Mills plasma
that is crucial for determining the plasma properties. In Ref. [5] the constituents of the magnetic
component are thought to be classical magnetic monopoles. In Ref. [4] the magnetic compo-
nent is identified with so-called magnetic strings which join (nonclassical) monopoles constituting
chainlike structures. The Abelian monopoles and the centervortices are constituents of a generic
gluonic object in which the two neighbor monopoles are connected together by a segment of the
vortex [6, 7]. InSU(2) gauge theory this object is considered as a monopole-vortexchain, while in
theSU(3) case the objects form the monopole-vortex 3-nets. The formation of the chains and nets
is essential for the self–consistent treatment of the monopoles in the quark-gluon plasma [4].

Both the magnetic (center) strings and the (Abelian) monopoles as well as their role in the
color confinement have been discussed in the lattice community for more than a decade [7, 8]. The
properties of these defects change markedly once the temperature is increased above the critical
valueTc. In particular, these defects become predominantly time–oriented in accordance with the
assumption that they become a light component of the thermalgluon plasma [4].

Once the magnetic component of the plasma is identified with the topological defects, further
information on its properties can be obtained by direct numerical calculations on the lattice at a
finite temperature. Below we report the results of the first lattice measurements of the contribution
of the magnetic strings and magnetic monopoles to the equation of state of the thermal Yang-Mills
plasma.

2. Equation of state and trace anomaly

The free energyF of the gauge system is expressed via a partition functionZ as follows:

F = −T logZ (T,V ) , Z =

∫
DA exp

{
−

1
2g2Tr G2

µν

}
, (2.1)

whereGµν = Ga
µνta is the field strength tensor of the non-Abelian fieldA andta are the generators

normalized in the standard way, Trtatb = 1
2δ ab. The pressurep and the energy densityε are given

by the derivatives of the partition function with respect tothe spatial volume of the system and with
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respect to the temperature:

p =
T
V

∂ logZ(T,V )

∂ logV
= −

F
V

=
T
V

logZ (T,V ) , ε =
T
V

∂ logZ(T,V )

∂ logT
. (2.2)

The last two equalities for the pressure are valid for a sufficiently large and homogeneous system
in thermodynamical equilibrium. The relation between the pressure and the energy in Eq. (2.2)
constitutes the equation of state of the system.

According to Eq. (2.2) it is sufficient to determine the partition function of the system to cal-
culate the corresponding equation of state. However, lattice simulations are suitable for calculation
of quantum averages of operators rather than the partition function itself. On the other hand, both
the energy and the pressure can be derived from the quantum average of a single quantity, which is
the trace of the energy–momentum tensorTµν .

In SU(N) gauge theory the energy–momentum tensor is given by the formula

Tµν = 2Tr

[
Gµσ Gνσ −

1
4

δµνGσρGσρ

]
, (2.3)

which is traceless because thebare Yang–Mills theory is a conformal theory. However, because
of a dimensional transmutation the conformal invariance isbroken at the quantum level and the
energy–momentum tensor exhibits a trace anomaly. The thermodynamic relations in Eq. (2.2)
give us

θ(T ) = 〈T µ
µ 〉 ≡ ε −3p = T 5 ∂

∂T
p(T )

T 4 = −T 5 ∂
∂T

logZ (T,V )

T 3V
. (2.4)

The pressure and energy density can be expressed via the trace anomaly as follows:

p(T ) = T 4

T∫
dT1

T1

θ(T1)

T 4
1

, ε(T) = 3T 4

T∫
dT1

T1

θ(T1)

T 4
1

+ θ(T ) . (2.5)

Thus the trace anomaly is a key quantity that allows us to reconstruct the whole equation of state.
Note that the trace anomaly should vanish in the case of free relativistic particles (ε = 3p),

or in the case when excitations are too massive compared withthe temperature,m ≫ T (thenε ∼

p ∼ exp{−m/T}). For Yang–Mills theory these statements imply that the dimensionless quantity
θ/T 4 should approach zero at both high temperatures (the gluons form a weakly interacting gas)
and low temperatures (the mass gap is much greater than the temperature).

The partition function ofSU(N) lattice gauge theory is written in the Wilson form,

Z (T,V ) =

∫
DU exp

{
−β ∑

P

SP[U ]
}

, SP[U ] = 1−
1
N

ReTrUP . (2.6)

The temperatureT = 1/(Nta) and the volumeV = (Nsa)3 of the system are related to the geometry
of the asymmetric lattice,N3

s Nt and to the lattice spacinga which is a function of the lattice coupling
β = 2N/g2. Using the relationT (∂/∂T ) = −a(∂/∂a) one can adopt Eq. (2.4) to describe the
lattice thermodynamics,

θ(T )

T 4 = 6N4
t

(
∂β (a)

∂ loga

)
· (〈SP〉T −〈SP〉0) , (2.7)
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where the plaquette averages〈SP〉T and〈SP〉0 are taken, respectively, in the thermal bath atT > 0
and in the zero–temperature case corresponding to the asymmetricN3

s Nt and symmetricN4
s lattices.

In Eq. (2.7) it is implied that theT = 0 plaquette expectation value is subtracted to remove the effect
of quantum fluctuations, which lead to ultraviolet divergency of the quantum expectation value. As
a result, the trace anomaly becomes an ultraviolet quantity, which is normalized to zero atT = 0
because of the existence of the mass gap. The trace anomaliesand the equation of states forSU(2)

andSU(3) gauge theories were calculated in Refs. [9] and [10], respectively.

3. Trace anomaly from monopoles in SU(3) lattice gauge theory

The magnetic monopoles are particle–like configurations appearing as singularities in the di-
agonal component of the gluonic fieldAdiag

µ in the so–called Maximal Abelian gauge, which makes
the off-diagonal gluon componentsAoff

µ non–propagating [11] (a review can be found in Ref. [8]).

The local gauge condition can formally be written asDdiag
µ Aoff

µ = 0. The monopole trajectorieskµ

are identified as sources of the Abelian magnetic field in the diagonal component of the gauge field,
kµ ∼ ∂ν F̃diag

µν . The magnetic charge is quantized and conserved quantity. Details of gauge fixing
and the determination of the monopole trajectories on the lattice can be found in Ref. [12].

The partition function of Yang–Mills theory can be represented as a product of two parts: the
first part is from the monopole contribution, while the second part is given by the remaining field
fluctuations including a perturbative contribution. The trace of the energy–momentum tensor in
Eq. (2.4) can consequently be represented as the sum of theseparts,

Z = Z
mon

Z
rest, θ = θmon(T )+ θ rest(T ) . (3.1)

The monopole partition function is given by the sum over the closed monopole trajectories,

Z
mon = ∑

δk=0

exp

{
−∑

i

fi(β )Smon
i (k)

}
, Smon

i (k) = ∑
s,µ

∑
s′,ν

kµ(s)K(i)
µν(s,s′)kν(s′) , (3.2)

where the monopole action consists of the two-point interaction termsSmon
i between the elementary

segments of the closed (δk = 0) monopole trajectories. Some part of the interactions terms –
defined by the kernelsK(i)

µν(s,s′) in Eq. (3.2) – are shown in Figure 1.
The coupling constants of the monopole actionfi are numerically determined as functions of

β with the help of the inverse Monte Carlo (MC) method [12, 13].The inverse MC algorithm uses
an ensemble of the monopole trajectories as the input, whichare located in the original gluonic
configurations by the Abelian projection method. We used 400statistically independent configu-
rations of theSU(3) gauge field generated by the usual MC procedure forLs = 16 andLt = 4,16
lattices. The inverse MC algorithm searches for the best monopole action that can most consistently
describe the ensemble of the monopole trajectories by the partition function in Eq. (3.2). In our
simulations we truncated the monopole action after 11 termsallowed us to describe the available
ensembles of the monopole trajectories with acceptable accuracy.

Having determined the monopole action we can calculate the contribution of the magnetic
monopoles to the trace anomaly of the gluon plasma,

θmon = N4
t

(
a

∂β
∂a

)
∑

i

(
∂ fi(β )

∂β

)[
〈S̄mon

i 〉T −〈S̄mon
i 〉0

]
, S̄mon

i =
1

N3
s Nt

Smon
i , (3.3)
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Figure 1: Schematic representation of typical terms in the lattice monopole action.

in which we used Eqs. (2.4), (3.1) and (3.2). Analogously to Eq. (2.7) we have normalized the
finite–temperature expectation values of the partsSmon

i of the monopole action, shifting these ex-
pectation values by the corresponding zero–temperature expectation values. The subtraction pro-
cedure is required to remove the ultraviolet divergencies and to correctly normalize the monopole
trace anomaly.
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Figure 2: (a) Contribution of the magnetic monopoles to the trace anomaly in SU(3) lattice gauge theory.
(b) The trace anomaly inSU(2) lattice gauge theory is divided into contributions from thevortex worldsheets
(squares) and from the whole space-time located outside thecenter vortices (circles). Their sum gives the
total contribution (diamonds). The lines connecting the data points are drawn to guide the eye. The vertical
lines mark the deconfinement temperatureTc.

The contribution of the monopoles to the trace anomalyθ/T 4 in SU(3) lattice gauge theory
is shown in Figure 2(a). In the confinement region the trace anomaly is zero. The anomaly starts
to increase atT ∼ Tc approaching a maximum at a temperature slightly above the deconfinement
temperature1. One also notices that the monopole contribution to the anomaly is a positive quantity
that increases at slower rate thanT 4 for T ≫ Tc. All these properties qualitatively match those of

1Note that this maximum is higher than that for the pure gluons[Eq. (2.7)] as calculated in Ref. [10]. We attribute
this difference to the large finite–size corrections originating from the relatively small and rough lattice (Nt = 4) used
in our numerical calculations. To improve our results at thequantitative level, one should check the scaling towards the
continuum limit (this work is currently in preparation).

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
7
4

Topological defects and equation of state of gluon plasma M. N. Chernodub

the original gluonic trace anomaly in Eq. (2.7) calculated numerically in Ref. [10]. We conclude
that the monopoles do contribute to the equation of state of the gluon plasma.

4. Trace anomaly from vortex worldsheets in SU(2) gauge theory

The vortices are magnetic defects, which can be identified ingluon field configurations using
the so–called Maximal Center gauge (a review and details canbe found in Ref. [7]). The gauge fixes
the non-Abelian gauge group up to its center subgroup. The magnetic vortices are then considered
as stringlike defects in the center gauge variables.

In SU(2) lattice gauge theory the position of the vortex is determined using theZ2 gauge field
Zl = signTrUl = ±1. The lattice field–strength tensor of theZ2 gauge field,ZP = ∏l∈∂P Zl, takes
the negative valueZP = −1 if the plaquetteP is pierced by the vortex worldsheets∗σµν(s) on the
dual lattice. IfZP = +1 then the plaquetteP is not pierced by the vortex.

The gluonic trace anomaly in Eq. (2.7) is proportional to theexpectation values of the plaquette
action. Therefore, the separation of space-time into two subspaces (occupied and not occupied by
vortices) leads to the natural splitting of the gluonic contribution to the trace anomaly into that
originating from the vortex worldsheets,θvort, and that from elsewhere,θrest:

θ = θvort + θrest since 〈SP〉 = 〈SP〉vort + 〈SP〉rest and ∑
P

SP = ∑
P∈σ

SP + ∑
P 6∈σ

SP . (4.1)

The two contributions to the plaquette action can be conveniently written as

〈SP〉vort =
1

NP
〈 ∑

P∈σ
SP〉 =

1
2

(
〈SP〉− 〈S̃P〉

)
, 〈SP〉rest=

1
NP

〈∑
P 6∈σ

SP〉 =
1
2

(
〈SP〉+ 〈S̃P〉

)
,(4.2)

whereNP = 6N3
s ×Nt is the total number of plaquettes on the lattice. The action

S̃P[U ] = SP[Ũ ] = 1−
1
2

TrŨP = 1−
1
2

ZPTrUP , where Ũl = ZlUl , Zl = signTrUl , (4.3)

can be interpreted as the action of the system with formally “removed” vortices. The above relations
are valid in the Maximal Center gauge. The standard plaquette actionSP[U ] is given by Eq. (2.6).

In Figure 2(b) we show the both contributions to the trace anomaly calculated forLs = 18
andLt = 4,18 lattices using from 100 to 800 configurations (depending on the value ofβ and the
lattice geometry). The contribution from the vortex worldsheets is negative, in agreement with
general theoretical expectations [14]. The maximum absolute value of the vortex contribution
is about three times larger than the pure–gluon contribution calculated numerically in Ref. [9].
This property of the topological magnetic contribution agrees with the observation [15] that the
magnetic gluon condensate provides a large negative contribution to the equation of state. Finally,
the contribution to the anomaly originating from the rest ofthe space-time (outside the vortex
worldsheets) is large and positive. The total sum of these contributions [also shown in Figure 2(b)]
is in agreement with a known result in theSU(2) lattice gauge theory [9].

It is worth noting that for the chosen lattice parameters themaximal contribution of the mag-
netic vortices to the trace anomaly is achieved when the vortices occupy on average only 5% of the
space-time. The negative contribution from the vortices isalmost canceled by the positive contri-
bution from the rest (95%) of the space–time. This fact allows us to conclude that the local gluonic
fields in the vortex worldsheets are much stronger than the fields outside the vortices.
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5. Conclusion

We found that both the magnetic defects, the monopoles and the vortices, contribute signifi-
cantly to the trace anomaly and, via Eq. (2.5), to the equation of state of the gluon plasma. The
contribution of the monopoles is positive while the vortices provide a negative contribution. These
results are particularly interesting in view of the fact [6,7] – which is particularly important in the
plasma regime [4] – that the monopoles and vortices are part of the generic object, which consti-
tutes a monopole–vortex chain/net. The contribution from the monopoles is calculated through the
determination of the monopole action, which takes into account local self-interaction as well as
nonlocal interactions between separated monopoles. In contrast, the contribution of the magnetic
vortices to the anomaly is calculated locally. Thus, the qualitative difference between the monopole
and vortex contributions is most probably due to the effect of the nonlocal interactions.

In conclusion, we stress our main result: the monopole-vortex chains inSU(2) gauge theory
and the monopole–vortex nets inSU(3) gauge theory are thermodynamically relevant objects in
gluon plasma, because they contribute significantly to the equation of state of the plasma.

This work was supported by Grants-in-Aid for Scientific Research from “The Ministry of
Education, Culture, Sports, Science and Technology” Nos. 13135216 and 17340080, by grants
RFBR 05-02-16306a and RFBR-DFG 06-02-04010, and by a STINT Institutional grant IG2004-2
025. The numerical simulations were performed using a SX7 supercomputer at RIKEN, SX5 and
SX8 machines at RCNP at Osaka University, and a SR11000 machine at Hiroshima University.
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