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We show that the degrees of freedom associated with magnetiopole— and vortexlike gluonic
configurations make a strong contribution to the anomalyhefénergy—momentum tensor of
Yang—Mills theory in the deconfinement phase immediatefwatihe critical temperature. As is
well known in zero—temperature Yang—Mills theory, the mpoles and vortices are constituents
of a generic gluonic object in which the two neighbor monegahre connected together by a
segment of vortex string. Our results provide evidencetti@tmonopole-vortex chains in SU(2)
gauge theory and their SU(3) counterparts, the monopatexmets, are thermodynamically
relevant degrees of freedom in the gluonic plasma.
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1. Introduction

The properties of thermal quark—gluon plasma in QCD havaa#d great interest in recent
years [1, 2]. The plasma can be studied by both heavy—ioisiooilexperiments and numerical
lattice simulations. The conventional theoretical apphot thermal plasma is to treat it, in a zero
approximation, as a gas of free gluons and quarks supplecherith perturbative corrections. On
the theoretical side, the bulk characteristics of the ptasath as pressure and energy density can
then be represented in terms of perturbative series in feetwe coupling constarg?(T). The
perturbative predictions for bulk quantities turn to be @asonable agreement with the available
lattice data [2] for sufficiently high temperatures.

On the other hand, some particular properties of the plasitia &s viscosity [3] indicate that
in the zero approximation the plasma at temperatures Blighbve the critical temperatuiie can
be considered as an ideal liquid rather than an ideal gasteTit@ot yet a coherent picture that
unifies both perturbative and nonperturbative featurea@fICD plasma.

It was speculated in Refs. [4, 5] that there is a magnetic corapt of Yang-Mills plasma
that is crucial for determining the plasma properties. If. g the constituents of the magnetic
component are thought to be classical magnetic monopoledief. [4] the magnetic compo-
nent is identified with so-called magnetic strings whicmj@ionclassical) monopoles constituting
chainlike structures. The Abelian monopoles and the cemtdices are constituents of a generic
gluonic object in which the two neighbor monopoles are cotetwtogether by a segment of the
vortex [6, 7]. InSJ(2) gauge theory this object is considered as a monopole-vohtax, while in
the U (3) case the objects form the monopole-vortex 3-nets. The fitomaf the chains and nets
is essential for the self—consistent treatment of the moleggn the quark-gluon plasma [4].

Both the magnetic (center) strings and the (Abelian) motegpas well as their role in the
color confinement have been discussed in the lattice comyriamimore than a decade [7, 8]. The
properties of these defects change markedly once the tatopers increased above the critical
valueT,. In particular, these defects become predominantly timenrted in accordance with the
assumption that they become a light component of the theghaah plasma [4].

Once the magnetic component of the plasma is identified Wwelidpological defects, further
information on its properties can be obtained by direct mizakcalculations on the lattice at a
finite temperature. Below we report the results of the firsida measurements of the contribution
of the magnetic strings and magnetic monopoles to the exueafistate of the thermal Yang-Mills
plasma.

2. Equation of state and trace anomaly
The free energy of the gauge system is expressed via a partition funcfoas follows:
‘ 1
F=_TlogZ(T,V), - / DAexp{—Z—ngr Gf,v} , 2.1)
whereG,, = G";‘,Vta is the field strength tensor of the non-Abelian fieldndt? are the generators

normalized in the standard way, tf® = %531’. The pressurg@ and the energy densityare given
by the derivatives of the partition function with respecttie spatial volume of the system and with



Topological defects and equation of state of gluon plasma M. N. Chernodub

respect to the temperature:

T dlogZ(T,V)

_ Talogz(TV) F T
- log Z(T,V), v dlogT

V. dlogv =~V V (2:2)
The last two equalities for the pressure are valid for a sefiity large and homogeneous system
in thermodynamical equilibrium. The relation between thespure and the energy in Eq. (2.2)
constitutes the equation of state of the system.

According to Eq. (2.2) it is sufficient to determine the pasti function of the system to cal-
culate the corresponding equation of state. Howevergcéatiimulations are suitable for calculation
of quantum averages of operators rather than the partitioctibn itself. On the other hand, both
the energy and the pressure can be derived from the quantnagavof a single quantity, which is
the trace of the energy—momentum tenggy.

In SU(N) gauge theory the energy—momentum tensor is given by theufarm

1
Tuv — 2TI’ G[JUGVU - ZéquUpGgp 5 (23)

which is traceless because thare Yang—Mills theory is a conformal theory. However, because
of a dimensional transmutation the conformal invariancbraken at the quantum level and the
energy—momentum tensor exhibits a trace anomaly. The dwmamic relations in Eq. (2.2)
give us

0 p(T) 50 logZ(TV)

— H\ _ o _T5 %Y P\')
OT) =(Tu)=e-3p=T" == =T =—— (2.4)

The pressure and energy density can be expressed via thatramaly as follows:
T
dTy 6(Ty)

g(M)=3T4 | ==
(T) T

T
" dT]_ 6(T1)
=T =

+O(T). (2.5)

Thus the trace anomaly is a key quantity that allows us tonstcoct the whole equation of state.
Note that the trace anomaly should vanish in the case of &lagivistic particles £ = 3p),
or in the case when excitations are too massive comparedhé@ttemperaturan>> T (thene ~
p ~ exp{—m/T}). For Yang—Mills theory these statements imply that theetigionless quantity
0/T4 should approach zero at both high temperatures (the gluwsnsd weakly interacting gas)
and low temperatures (the mass gap is much greater thamtipetature).
The partition function o8J (N) lattice gauge theory is written in the Wilson form,

ff(T,V):/DU exp{—BZSp[U]}, Sa[U]:l—%ReTrUp. (2.6)

The temperatur@ = 1/(N;a) and the volume& = (Nsa)® of the system are related to the geometry
of the asymmetric latticeM3N; and to the lattice spacirawhich is a function of the lattice coupling
B = 2N/g?. Using the relationTl (3/dT) = —a(d/da) one can adopt Eq. (2.4) to describe the
lattice thermodynamics,

6(T) 9B(a)

2 —one (2. ()7 (o) @7
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where the plaquette averagé); and(Sp), are taken, respectively, in the thermal batfTat 0
and in the zero—temperature case corresponding to the asyimMgEN, and symmetridNg lattices.

In Eq. (2.7) itisimplied that th& = 0 plaquette expectation value is subtracted to remove feetef
of quantum fluctuations, which lead to ultraviolet diverggnf the quantum expectation value. As
a result, the trace anomaly becomes an ultraviolet quamthich is normalized to zero & =0
because of the existence of the mass gap. The trace anomradi¢se equation of states f8U (2)
andSJ (3) gauge theories were calculated in Refs. [9] and [10], resmdye

3. Trace anomaly from monopolesin SU(3) lattice gauge theory

The magnetic monopoles are particle—like configurationgeapng as singularities in the di-
agonal component of the gluonic fieﬁ@iag in the so—called Maximal Abelian gauge, which makes
the off-diagonal gluon componen@@ff non—propagating [11] (a review can be found in Ref. [8]).
The local gauge condition can formally be Writtentz$agAﬁff = 0. The monopole trajectorids,
are identified as sources of the Abelian magnetic field in thgahal component of the gauge field,
Ky ~ avlfﬁ\',ag. The magnetic charge is quantized and conserved quantétail® of gauge fixing
and the determination of the monopole trajectories on titiedacan be found in Ref. [12].

The partition function of Yang—Mills theory can be represehnas a product of two parts: the
first part is from the monopole contribution, while the set@art is given by the remaining field
fluctuations including a perturbative contribution. Thact of the energy—momentum tensor in
Eqg. (2.4) can consequently be represented as the sum offthdse

o — meonggresty 90— emon(-l—) + erest(-l—) . (31)

The monopole partition function is given by the sum over tflosed monopole trajectories,

zmn- Y exp{— S f <B>S"°”<k>} C =Y Y k(K (s Sku(S),  (32)
sk=0 [ SASV
where the monopole action consists of the two-point intesa¢ermsS"°" between the elementary
segments of the closeaﬁl( 0) monopole trajectories. Some part of the interactionsiger
defined by the kernelléuv(s,s’) in EqQ. (3.2) — are shown in Figure 1.

The coupling constants of the monopole actfpare numerically determined as functions of
B with the help of the inverse Monte Carlo (MC) method [12, T}}e inverse MC algorithm uses
an ensemble of the monopole trajectories as the input, wdrieHocated in the original gluonic
configurations by the Abelian projection method. We used ¢t@@stically independent configu-
rations of theUJ (3) gauge field generated by the usual MC procedurd_fer 16 andL; = 4,16
lattices. The inverse MC algorithm searches for the besopole action that can most consistently
describe the ensemble of the monopole trajectories by thiiga function in Eg. (3.2). In our
simulations we truncated the monopole action after 11 tertosred us to describe the available
ensembles of the monopole trajectories with acceptablerace

Having determined the monopole action we can calculate dndribution of the magnetic
monopoles to the trace anomaly of the gluon plasma,

o () 3 (240 e @, e g o
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Figure1: Schematic representation of typical terms in the latticeopmle action.

in which we used Egs. (2.4), (3.1) and (3.2). Analogously ¢p .7) we have normalized the
finite—temperature expectation values of the pg§ft&' of the monopole action, shifting these ex-
pectation values by the corresponding zero—temperatyrecétion values. The subtraction pro-
cedure is required to remove the ultraviolet divergenciasta correctly normalize the monopole
trace anomaly.
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Figure 2: (a) Contribution of the magnetic monopoles to the trace alpin U (3) lattice gauge theory.
(b) The trace anomaly iU (2) lattice gauge theory is divided into contributions from Woetex worldsheets
(squares) and from the whole space-time located outsideethier vortices (circles). Their sum gives the
total contribution (diamonds). The lines connecting thngints are drawn to guide the eye. The vertical
lines mark the deconfinement temperafiye

The contribution of the monopoles to the trace anontyly 4 in U (3) lattice gauge theory
is shown in Figure 2(a). In the confinement region the traceraty is zero. The anomaly starts
to increase al ~ T, approaching a maximum at a temperature slightly above thenfimement
temperaturk One also notices that the monopole contribution to the ahpis a positive quantity
that increases at slower rate tiBffor T >> T.. All these properties qualitatively match those of

INote that this maximum is higher than that for the pure glU&its (2.7)] as calculated in Ref. [10]. We attribute
this difference to the large finite—size corrections omging from the relatively small and rough lattids; (= 4) used
in our numerical calculations. To improve our results atghantitative level, one should check the scaling towards th
continuum limit (this work is currently in preparation).
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the original gluonic trace anomaly in Eq. (2.7) calculatednerically in Ref. [10]. We conclude
that the monopoles do contribute to the equation of stateeoftluon plasma.

4. Trace anomaly from vortex worldsheetsin SU(2) gauge theory

The vortices are magnetic defects, which can be identifigduon field configurations using
the so—called Maximal Center gauge (a review and detailbedound in Ref. [7]). The gauge fixes
the non-Abelian gauge group up to its center subgroup. Thgnei vortices are then considered
as stringlike defects in the center gauge variables.

In J (2) lattice gauge theory the position of the vortex is determhinging theZ, gauge field
Z; = signTiJ; = £1. The lattice field—strength tensor of the gauge fieldZp = [,cop 4, takes
the negative valu&p = —1 if the plaquetteP is pierced by the vortex worldsheets,,, (s) on the
dual lattice. IfZp = +1 then the plaquettP is not pierced by the vortex.

The gluonic trace anomaly in Eq. (2.7) is proportional todkpectation values of the plaguette
action. Therefore, the separation of space-time into tvibsgaces (occupied and not occupied by
vortices) leads to the natural splitting of the gluonic cimition to the trace anomaly into that
originating from the vortex worldsheet8,, and that from elsewherjes:

0 = Byort+ Brest  SiNCE  (S) = (So)vort+ (SP)rest  and ZSP = pz S+ ; S. (41
co Pdo
The two contributions to the plaquette action can be comvely written as

Shon= (5 $) =3 (%) F) . Shes= o3 =5

o] NPPO’ 2

(1) +(&)) (4.2)

whereNp = 6NS x N; is the total number of plaquettes on the lattice. The action

SU]=SU]=1- %TI’GP =1-— %ZPTI'UP, where U, =27V, Z =signTi;, (4.3)
can be interpreted as the action of the system with formadignbved” vortices. The above relations
are valid in the Maximal Center gauge. The standard plagaetionS>[U] is given by Eqg. (2.6).

In Figure 2(b) we show the both contributions to the tracenzalyg calculated folLs = 18
andL; = 4,18 lattices using from 100 to 800 configurations (dependmghe value of3 and the
lattice geometry). The contribution from the vortex woHdsts is negative, in agreement with
general theoretical expectations [14]. The maximum alsolalue of the vortex contribution
is about three times larger than the pure—gluon contributialculated numerically in Ref. [9].
This property of the topological magnetic contribution eag with the observation [15] that the
magnetic gluon condensate provides a large negative batitm to the equation of state. Finally,
the contribution to the anomaly originating from the resttlud space-time (outside the vortex
worldsheets) is large and positive. The total sum of thes&riboitions [also shown in Figure 2(b)]
is in agreement with a known result in tBdg (2) lattice gauge theory [9].

It is worth noting that for the chosen lattice parametersnla&imal contribution of the mag-
netic vortices to the trace anomaly is achieved when thécasroccupy on average only 5% of the
space-time. The negative contribution from the vorticeansost canceled by the positive contri-
bution from the rest (95%) of the space—time. This fact adlow to conclude that the local gluonic
fields in the vortex worldsheets are much stronger than thdsfautside the vortices.
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5. Conclusion

We found that both the magnetic defects, the monopoles anddtiices, contribute signifi-
cantly to the trace anomaly and, via Eq. (2.5), to the egoatiostate of the gluon plasma. The
contribution of the monopoles is positive while the vortiggrovide a negative contribution. These
results are particularly interesting in view of the fact 7~ which is particularly important in the
plasma regime [4] — that the monopoles and vortices are paneayeneric object, which consti-
tutes a monopole—vortex chain/net. The contribution froenrhonopoles is calculated through the
determination of the monopole action, which takes into antdocal self-interaction as well as
nonlocal interactions between separated monopoles. lmasinthe contribution of the magnetic
vortices to the anomaly is calculated locally. Thus, thditptve difference between the monopole
and vortex contributions is most probably due to the efféthe nonlocal interactions.

In conclusion, we stress our main result: the monopoleexochains inSJ (2) gauge theory
and the monopole—vortex nets & (3) gauge theory are thermodynamically relevant objects in
gluon plasma, because they contribute significantly to thuton of state of the plasma.
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RFBR 05-02-16306a and RFBR-DFG 06-02-04010, and by a SThsfitutional grant 1IG2004-2
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