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1. Introduction

Heavy-ion collision experiments at RHIC and LHC lead to thermalized dense matter at small
but non-zero baryon density, or equivalently chemical potential. Therefore it is necessary to study
the bulk thermodynamics of QCD at finite chemical potentials. In this work, we use the Taylor
expansion methodl] to study the equation of state, the number density and fluctuations of various
guantum numbers on the lattice. We study 2 flavor QCD with tree level Symanzik-improved
gauge action and p4fat3-improved staggered fermion ac3joif he simulations are carried out on
16° x 4 and 24 x 6 lattices on a line of constant physics with almost physical quark masses; the
pion mass is about 220 MeV and the strange quark mass is adjusted to its physical value. We have
scanned a temperature range approximately from 170 MeV to 500 MeV. We are using the exact
RHMC algorithm f] to update configurations. Details on our simulation parameters can be found
in [5].

2. Taylor expansions of thermodynamic quantities

For a large homogeneous system, the pressure of QCDundtands quarks can be expressed
as
P Lz (VT e e ) 2.1)
T2~ VTS » Iy Hu, Md, Ms) , .
where the partition functiod is a function of the volum¥, temperatur@d and chemical potentials
of u, d, ands quarks. We have not considered other species of quarks whose masses are much
heavier. Due to the sign problem, the difficulty of a direct lattice calculation at non zero chemical

potentials arises. We perform a Taylor expansion in terms of the chemical potentials

B-zem(®)(2) (%) 2

and compute the coefficientgx at zero chemical potentials. When the summj 4k is odd, the
coefficientc;jx is given as expectation value of purely imaginary operators and therefore vanishes
exactly. This reflects the invariance of the QCD partition function under change of particle and anti-
particle. The leading terrtygo gives the pressure at vanishing baryon density and can be calculated
via the integral method. Results for the parameter values considered here have been presented in
[5]. In this work, we will concentrate on the part of the pressure

Ap= p(f) — p(pt = 0), (2.3)

that arises due to non-zero chemical potentials, whkete (U, Uq, 4s). Fori+ j+k > 0, the
coefficients

1 9 9l ok 4
Tk 97, 971 dﬂg(p/T ) = (2.4)

are derivatives of the partition function, and can be calculated on the lattice, jwhere/T. These
coefficients provide information about other thermal quantities as well. For example, the strange
guark number density expands in chemical potentials as

n o
T—sé = zk(kJr 1) Gij e 1) A1 1S, (2.5)
I7J7
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and similarly the light up and down quark numbers. We can further consider fluctuations in these
guantities.

Alternatively, one can introduce chemical potentials for the conserved quantities baryon num-
berB, electric charg&) and strangeness which are related toy,, tq, Us via

1 2 1 1 1 1
Hu=zHe+zHo,  Ha=3zHs—3HQ,  Hs=gHe—3HQ—Hs, (2.6)
and compute e.g. the baryon density as
1
Ng = é(nu-i-nd-i-ns)- (2.7)

Then we can study densities and fluctuationB,i®Q andS.
In the following, we will regards andd quarks as degenerate and consideri2flavor QCD.
With the definitiontg = uy = g for the light quarks, the coefficients are
s 1 0 d

= ——— — (p/T? , 2.8

U o o (P/T%) im0 28)
where the subscripts denote the order of the derivative and the superscripts indicate the correspond-
ing flavors. If not specified, the default superscripts wilbjsand will often be left out. Itis evident
from Egs. @.6) that choosingu, = g is equivalent to a vanishing electric charge potentigi 0.

Now we discuss how to evaluate these coefficients on the lattice. Inserting2EL).info

Eq. (2.8) and integrating out the fermion fields in the partition function yields the coefficients as
expectation values of operators that contain derivatives of the determinant of the fermionvhatrix
For example the formula faxg reads

_ N; (nf /0%Indet niv2 / /dIndetM \ 2
°2°—2—Ng,<z<—aag >+(z> <<—aaq ))) 29)

whereN; andNg are temporal and spacial extent of the latticejs the number of quark flavors

in question (heren; = 2), and(---) indicates taking the thermal average over the ensemble. On
each configuration, derivatives of In déteed to be evaluated up to the same order as the order of
the expansion coefficients. These derivatives lead to the appearances of the inverse fermion matrix
M~ inside traces

JdindetM 1M

“on Tr (M 011) (2.10)
d?IndetM _,0%M _1OM . 10M
e Tr (M 0—“2) —Tr (M M M~ au> (2.11)

To avoid full matrix inversions, we use the random noise method in estimating such traces. Suppose
we have generated a setfandom noise vecto®®, a=1,...,N, then the trace can be estimated
as

T( ) %% 3 M-1R@ (2.12)
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where ¢ is some arbitrary matrix. For each vec®® only the linear systenviX = R@ needs

to be solved. It is still quite expensive to compute all necessary operators, since a large number of
random vectors is needed in order to get a satisfactory accuracy. Also, higher order coefficients are
more expensive, because more operators are needed. For the 4th order coefficients one has

o — 1 nt d4IndetM
0T ANEN | 4\ ol
2
ni\2 / 3IndetM dIndetM ni\2 / [ d%IndetM
+4(— +3(— bbbt
()" (Zpeemantont) o' { () )
, ) . (2.13)
+6(m)3 d<IndetM [/ dIndetM +(m>4 JdlindetM
4 oué J Hg 4 dHq
2
ni / @2IndetM niz2 / /dIndetM 2
(TR ) (5)) |
Mg Hq

23Indetm _,0%M M, 0?M
o _Tr<M —0u3>—3Tr<M M _0u2>

oM oM oM
—1_M—1_M—1_
ou  ou 0u> ’

0*Indetm _,10*M M, 03M
o _Tr<M —du4>—4Tr(M oM —(Mg)

9’M 9’M oM oM 9’M
o —1Y Mg " 1YV g1 -1
3Tr <|v| Ene M 0u2> + 12Tr<M T M 3 M 0u2>

oM oM oM oM
—6Tr(M1IZ=Mm 12— 1M 122 ). 2.1
° r( ou oy ou du) (2-15)

where

+2Tr (M (2.14)

Five matrix inversions per random vector are necessary here, while for the 6th order, 12 matrix
inversions are needed. Depending on quark mass, temperature and particular operator, different
numbers of random vectors are needed to obtain that the errors arising from the stochastic estimator
are smaller than or of the same magnitude as the statistical fluctuations within the ensemble.

3. Pressure and densities

In this section, we will first show results for the coefficients, then use them in computing
pressure and quark number densities.

In Fig. 1, we show the coefficientsggandcgos on bothN; = 4 and 6 latticesc,gg, also known
as the fluctuation iru (d) quark number density, increase rapidly through the phase transition
region. As one can see, the lattice cut-off effect is small and seems to be under control. Results for
Cooz from N; = 8 lattices B] further support this statement. The fourth order coefficarghows
a pronounced peak aroufig. To compare the quark mass dependengg, andcgo, for u ands
quarks respectively are shown in Fig. The slope is steeper for light than for the strange quarks,
which indicates a stronger sensitivity to the chiral transition for lighter quark masses. We also show
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Figure 1: cpop On the left andcgpqon the right forN; = 4 and 6. The second order coefficients increase
rapidly from confined phase to deconfined phase at around 200 MeV, while the fourth order ones develop
a peak there. Stephen-Boltzmann limits of the free case for the action that we use are marked for both
guantities and matched very well in the high temperature region.
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Figure 2: Second order coefficientsoo and coo2 Figure 3: ¢j; onN; = 4 and 6 lattices.

for u ands quark respectively oil; = 6 lattice.

c‘ﬁ in Fig. 3, which approaches zero from below in the high temperature limit.

Combining all the measured coefficients, we obtain pressure and number density according to
formula €.2) and @.5). In Fig. 4, we show the pressure differensp/T# and light quark number
densitynq/T3 at finite light quark chemical potential but zero strange quark chemical potential
Us =0, up to the 4th order. This should be compared to the pressure at vanishing chemical potential
[5], which rises rapidly to a value of abog/T# ~ 14 above the transition. The finite density
contribution to the pressure adds to this less than 109§6f < 1.

4. Hadronic fluctuations at zero and non-zero chemical potential

Fluctuations of charge densitiag s are related by the fluctuation dissipation theorem to the
second derivatives of the partition function with respect to the corresponding chemical potentials
HUssq. HereB, S Q denote baryon number, strangeness and electrical charge, respectively. Using
Egs. @.6) we can rearrange the expansion coefﬁcieﬁ‘§§0f the pressure to get the coefficients of
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Figure 4: Pressuré\p/T# and light quark number den:sit)(]/T3 at us =0 andpy/T =0.2, 04, 0.6 and
1.0. Small differences are observed betwé&n= 4 and 6, especially whepq/T is small. Light quark
number density seems to develop a peak around 200MeV wdehincreases.
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Figure 5: Quadratic and quartic baryon number fluctuations at vanishing net density as function of temper-
ature. Preliminary data from (2+1)-flavor simulations with almost realistic quark masses are compared with
previous 2-flavor simulations [2]. Both results have been obtained dr 46attices.

an expansion ipig s o, defined as

L CIGICS =

E.g., the following two relations hold fabgy = c§ andcjoy = c§

G5 Breieed). o g(ErirBele). (2
In Fig. 5 we show the first two diagonal expansion coefficientgdiiT as function of temper-

ature, which can also be interpreted as the quadratic and quartic baryon number fluctuations. We

compare our preliminary results for (2+1)-flavor and almost realistic quark masses to earlier results

with 2-flavor and a pion mass; ~ 700MeV [2]. The normalization is such that in both cases the

same Stefan-Boltzmann value for large temperatures is reached, i.e. we have divided by the num-

ber of flavors. An obvious shift in the curves reflects the shift in the transition temperature from
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Figure 6: Quadratic and quartic electric fluctuations at vanishing net density as function of temperature. Pre-
liminary data from (2+1)-flavor simulations with almost realistic quark masses are compared with previous
2-flavor simulations [2]. Both results have been obtained on<i4lattices.

about 22(MeV to 200MeV. Moreover the sudden change in the quadratic fluctuations is more pro-
nounced for the smaller masses and the Stefan-Boltzmann value is reached faster. Correspondingly,
the peak in the quartic fluctuations is higher for smaller masses.

The expansion coefficients ims/T are identical to that inus/T — although the strangeness
chemical potential differs from the strange quark chemical potential by a different sign — and are
shown in Fig.1 and2. In Fig. 6 we show the first two diagonal expansion coefficientgidy T.

The qualitative picture is very similar tpg/T although the quark mass dependence of the peak
height is significantly weaker.

Using the expansion coefficients g so/T, one can construct hadronic fluctuations at non-
zero baryon number density. Up to fourth order correctiopgfiT we have the following relations
for baryon number, strangeness and electric charge fluctuatises

XB(I_IJ_E;/T) — 2B 4128 <$>2+ﬁ [(%)4] (4.3)
Xs(LTIBZ/T) _ 20§+20528<$)2+ﬁ [(%)4] (4.4)
e/ — oxg-2ag () o | (8)] “9

In Fig. 7 we show baryon number and strangeness fluctuations at finite baryon number density.
It is obvious that both quantities are developing a peak for incregsifi@. However, the peak
in xg is much more pronounced since this quantity eventually diverges at the critical point in the
(T — ug)-plane. As we anticipated from Fi®, the peak height irxg is about twice as large as
in earlier calculations with larger quark massgp [Note that higher order corrections are still
important, especially the position of the peak will pg-dependent only by including the next
higher order. This has to be analyzed in more detail and eventually will allow to limit the range of
values forug/T where the leading order result is reliable.

The off-diagonal coefficients in E4.1are usually connected to correlations between baryon
number, strangeness and electrical charge. The correlation of baryon number and strangeness can
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Figure 7: Baryon number and strangeness fluctuations at finite baryon number density, controlled by a finite
baryon chemical potential. Results are correct up to fourth order corrections in chemical potential and have
been obtained on 6« 4 lattices.
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Figure 8: Correlation between baryon number and strangeness for several values of the baryon chemi-
cal potential from 18 x 4 lattices (left) and the linkage between baryon number and electric charge with
strangeness respectively (right). On the right panel we compare or preliminary data (full symbols) to pre-
viously obtained results from partially quenched calculations (open symbols) [7], both obtaiihgd-0f

lattices.

be expressed in terms of expansion coefficients as

72 (reng) — (ne) n) — 5+ 32 (2) .0 | ()] @6)
and is shown in Fig8. We find that also this quantity is developing a peak for increasing chemical
potential, thus the enhanced correlations suggest the vicinity of a critical point. Another interesting
guantity is the “linkage” of strangeness and baryon number or electric chgrgehjich is defined

asCsx = C33/¢5, whereX = B, Q. It is known to be a robust quantity, i.e. the cut-off effects are
small. In Fig.8 (right) we compare our preliminary results with almost realistic quark masses with
previously obtained partially quenched results and slightly larger light quark ma&gsa@sé two
calculations show good agreement, thus also the quenching and quark mass effects seem to be small
in this quantity. Both results on correlation and linkage between the different quantum numbers
suggest that the basic charges are carried by quasi-free quark directly above the transition. This
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seems to rule out the existence of bound states as dominant degrees of freedom in this8legime [

5. Conditions at heavy ion colliders and constrained densities

In general, the pressure, or higher derivatives of the partition functions with respect to chemical
potentials, are dependent on at least 3 variapless or equivalentlyug sqo. So far we chose
pg > 0, while holdingus = g = 0. To compare with experiment, for instance heavy ion collisions,
the chemical potentials might need to be adjusted to meet the conditions of particular event-by-
event fluctuation analyze8][ A very natural choice of the chemical potentials is to constrain the
strange quark density to zero. Due to the existence of non zero off-diagonal coefficientglid Eq.
we find an increasing strangeness with increagigigeven forus = 0. In heavy ion experiments the
total strangeness is zero. Below we outline a procedure to constrain the net strange quark number
densityns to zero, subsequently order by order in qurexpansion. The procedure can be easily
generalized to constrain other charge densities to arbitrary values. This might be of importance,
since experiments are often restricted to certain rapidity windows, which may alter expectation
values of charge densities.

We can express the strange quark number densdjyir{ terms of the expansion coefficients
of the pressure. Up to the 4th order, it reads

Ns = —ns({ls, fis) = —CTTils — 2C55fis — C3THE — 2C55[i s — 3Crsisfé — 4cosfid =0,  (5.1)

wherefl = u/T, which means that the strangeness chemical potgriialno longer a free param-
eter but depends qus,

3 2 4
fis(fis) = ( cit ) ; <2c8‘fc§‘ls — 3c5ChT Crs + 4y CTicsy — 4g

32830218 3 5

— =2 s+ O ([g) -

2c83 8cs’ fg+ 0 (Pe)
(5.2)

Therefore, the formula for the pressure is modified to

B BS~BS* BS3BS ~BS2-BS ~BS-BS
Ap [ Bs Ci1 ) s2 Bs, CosCit  Cii Cis , Cit C55 B cPRest
Hg+ | Ca0 +

L Cz 0— —ge _
T 4cs 1685" 8BS | 4B 255

) g+ 0 (18), (5.3)

which contains off-diagonal coefficientgs,c13, etc. On the quark level those coefficients are
generally small numbers since they are not present in the free theory. However, on the hadronic
level they contain the diagonal strange quark coefficients which have — at least in leading order — a
non-zero Stefan-Boltzmann limit. Hence the constramgts 0 andus = 0 lead to a quite different
dependence of the pressure pg/T, as can be seen in Fy(left). The difference is almost
negligible, when performing an expansion in the light quark chemical potenidl instead. It is
interesting to mention that with the constramt= 0, the pressure expansion jig/T and ug/T

are identical up to a trivial factor between the two chemical potentials, i.e. the relafien3pq

holds in this case and we have

Ap/TH(pa/T)| o = AP/T*(ks/T, o = 0)|,_o- (5.4)

We have also computed the constrained baryon number fluctuations at finite baryon chemical
potential Xg. Qualitatively, the two cases @fs = 0 andns = 0 are very similar. However, it is
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Figure 9: The pressurdp/T# up to the second order for both constraints as labeled (left) and the ratio
A Xs/Xs as explained in the text (right) for various valuesgf/T. The differences between the two
constraints are of the order of 30% for both quantities. Results have been obtainethof Rdtices (left)

and 16 x 4 lattices (right).

interesting to remark that the two cases reach different Stefan-Boltzmann limits for high tempera-
tures T — ). Taking this into account we show in Fig(right) the ratio./ Xg/xs, where./" is

the ratio of the corresponding Stefan-Boltzmann values. As one can see, the differencé:below

as high as 30%.

6. Summary and conclusions

We have presented a method to rigorously compute corrections to bulk thermodynamic quan-
tities at non vanishing chemical potential, by performing a Taylor expansigyiTh Our new pre-
liminary results improved previous calculations in many ways: we went to smaller quark masses,
finer lattice spacings and 2+1 dynamical quark flavor. We also showed how to calculate various
hadronic fluctuations, starting from a theory which naturally is formulated in terms of quark fields,
as QCD is. The Taylor expansion method provides a variety of input to heavy ion phenomenology.

Our findings are that the finite chemical potential contribution to the pressure is blow 10%,
up to a chemical potential gfg/T < 3 and that various hadronic fluctuations develop a peak with
increasing baryon chemical potential. This seems to hold true also for strangeness fluctuations,
although the peak is much less pronounced in this case. Correlations between strangeness and
other charges increase as well when approaching the critical point.
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