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1. Introduction

The order of the phase transition for QCD with two light flavors (N f = 2) is an important, still
open issue. A second order transition would imply a crossover at mq 6= 0, hence a possible critical
point in the T −µ plane, where µ is the baryon chemical potential. Instead a first order transition
would likely persist also for small quark masses, with no apriori need for such critical point.

Predictions about the order of the transition can be based on a renormalization group analysis
of the effective chiral model [1] and turn out to be strictly related to the realization of the axial
UA(1) at the phase transition point. If the UA(1) anomaly is effective at the transition, i.e. if there is
no light pseudoscalar meson in the singlet channel, the effective model has a infrared stable fixed
point in the O(4) (O(2) in the case of staggered discretization) universality class, hence the phase
transition can be second order in that universality class or first order. If instead the UA(1) anomaly
is not effective, i.e. if the η ′ meson becomes light at the phase transition, then the prediction [2]
for the effective model is that of second order in the U(2)L⊗U(2)R/U(2)V universality class or first
order (see also Ref. [3] for a numerical analysis of this issue within strongly coupled QED).

In a direct finite size scaling analysis of the chiral phase transition [4] we have found evidence
against O(2)−O(4) scaling and hints in favour of a first order transition, which are currently being
checked for all possible systematic effects [5]. As a due complement to our analysis, we have also
planned to perform a study of the behavior of mη ′ across the chiral phase transition.

Determinations of the η ′ mass on the lattice are notoriously difficult, because of the discon-
nected diagrams entering the η ′ propagator, whose numerical determination turns out to be very
noisy [6, 7, 8, 9]. For that reason we have decided to follow a different approach, which is based on
the determination of mη ′ through the measurement of topological charge correlators. We present
here an explorative study and discuss some preliminary results.

2. The method

The two point function of the topological charge density operator

Q(x) =
g2

64π2 εµνρσ Fa
µν(x)Fa

ρσ (x) (2.1)

is dominated at large distances by the lightest physical state coupled to Q, i.e. the pseudoscalar
singlet meson η ′ in presence of dynamical fermions. In particular we can write, for the temporal
correlator at zero momentum

lim
t→∞

∫

d3x〈Q(~x, t)Q(0)〉 ∼ Ae−mη ′ t , (2.2)

where the constant A is negative by reflection positivity. Therefore mη ′ can be determined by
studying topological charge correlators.

Any definition of the discretized topological charge density QL(x) can be adopted, with proper
care about renormalizations and contact terms. In particular the lattice correlator 〈QL(x)QL(0)〉 is
related to 〈Q(x)Q(0)〉 by

〈QL(x)QL(0)〉 = Z2〈Q(x)Q(0)〉+ cL(x) (2.3)
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Figure 1: Topological charge correlators and their ratios up to the second smearing level in the pure gauge
theory on anisotropic lattices.

where Z is a multiplicative renormalization and cL(x) a delta-like positive contact term: a similar
term is present also in the continuum definition, ensuring χ = 〈Q2〉/V > 0. Actually, in pres-
ence of dynamical fermions, mixings with other pseudoscalar fermion operators are present, which
however do not change the asymptotic behavior of 〈QL(x)QL(0)〉, since they all couple to the pseu-
doscalar singlet channel.

On the lattice the contact term cL(x) is non zero over a finite region of size SOL around x = 0,
where reflection positivity 〈QL(x)QL(0)〉< 0 is violated. SOL depends on the extension of the lattice
operator QL(x). Therefore the relation

C(t) ≡ ∑
~x

〈QL(~x, t)QL(0)〉 ∼ Z2Ae−mη ′ t (2.4)

holds for large enough t, provided also that t > SOL . It clearly appears that the multiplicative
renormalization constant Z is not relevant for determining mη ′ .

Our choice for QL(x) is that of a simple discretization of Q(x) given in terms of gauge fields.
We consider for instance the sequence of smeared operators [10]

Q(i)
L (x) =

−1
29π2

±4

∑
µνρσ=±1

ε̃µνρσ Tr
(

Π(i)
µν(x)Π(i)

ρσ (x)
)

, (2.5)

where Π(i)
µν(x) is the plaquette operator constructed with i–times smeared links U (i)

µ (x), which are
defined as

U (0)
µ (x) = Uµ(x) ,

U
(i)
µ (x) = (1− c)U (i−1)

µ (x)+
c
6

±4

∑
α=±1
|α|6=µ

U (i−1)
α (x)U (i−1)

µ (x+ α̂)U (i−1)
α (x+ µ̂)†, (2.6)

U (i)
µ (x) = U

(i)
µ (x)/(

1
3

TrU
(i)
µ (x)†U

(i)
µ (x))1/2

(c = 0.9 is usually taken as an optimal choice for the SU(3) gauge group). The asymptotic behav-
ior of the correlator is independent of the operator and solely related to the η ′ mass. The effect of
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Figure 2: Effective mass plot obtained from the 1-smeared and 2-smeared topological charge correlator.

smearing is that of damping the UV fluctuations: noise is reduced and the multiplicative renormal-
ization Z increases, with a great improvement in the signal/noise ratio [11]. However smearing also
increases the size (in lattice units) of the operator OL(x), hence the size SOL of the region where
the correlator C(t) is still affected by contact terms (cL(x) 6= 0). Therefore we have to look for an
optimal balance between the two opposite effects: that can be difficult because of the large value
of mη ′ and/or of the limited number of lattice sites available at finite temperature.

In order to make the problem less critical we have decided to work on anisotropic lattices.
That choice has indeed various benefits. First, a smaller temporal lattice spacing at leads to a
larger number of temporal lattice sites Lt for a fixed temperature T = 1/(Ltat), therefore to an
increased number of useful determinations of the correlator C(t). Moreover, in the specific case
of the topological charge correlator, the size SOL of the region where the correlator C(t) is still
affected by contact terms is reduced in physical units. Finally, the temperature can be fine tuned
by simply changing Lt , i.e. without changing the physical scale and/or the spatial volume, thus
isolating effects purely due to a change of T .

We illustrate as an example results obtained in the pure gauge theory, where we have used the
anisotropic action defined as

SG =
β
Nc

1
γ ∑

x,i< j≤3

ReTr(1−Πi j(x))+
β
Nc

γ ∑
x,i≤3

ReTr(1−Πi4(x)) . (2.7)

with β = 6.25, γ = 3.2552, leading to ξ = 4 and at ≈ 0.021 fm [12, 13]. We show results obtained
on a 243 ×40 lattice, corresponding to a spatial extent of about 2 fm and to a temperature T ' 230
MeV. In Fig. 1 [left] we show the correlators up to the second smearing level with a zoom in
the region where reflection positivity is respected. Asymptotically we expect 〈Q(i)

L (x)Q(i)
L (0)〉 '

Z2
i 〈Q(x)Q(0)〉 for every operator, hence ratios of different lattice correlators must reach a plateau

at a value ∼ (Zi/Z j)
2. That is indeed what happens, as can be appreciated from Fig. 1 [right]. If we

look at the effective mass plot − ln(C(t +1)/C(t)), which is shown in Fig. 2 for the 1-smeared and
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Figure 3: Chiral condensate and Polyakov loop as a function of 1/Lt on an anisotropic lattice in full QCD.

2-smeared operators, we notice that a plateau is reached at large distances, with compatible results
obtained for operators at different smearing levels.

3. N f = 2 simulations

For our exploratory full QCD simulations we have adopted the anisotropic gauge action pro-
posed in Ref. [14] for two light staggered flavors. That is defined in terms of standard pure gauge
and staggered actions, with β = 5.3, amq = 0.008 and bare anisotropy ξ0 = 3.0, corresponding to
mπ/mρ ∼ 0.3 , as ' 0.34 fm and at ' 0.085 fm, hence to a renormalized anisotropy ξ ≡ as/at ' 4.

We are performing numerical simulations on the apeNEXT facility in Rome using lattices
with Ls = 16 (Lsas ∼ 5 fm) and variable Lt . In Fig. 3 we report results obtained for the chiral
condensate and the Polyakov loop as a function of 1/Lt , showing a phase transition taking place
around Lt = 16. Results for the topological charge correlators have been collected on lattices with
Lt = 24 (T ∼ 100 MeV, ∼ 30K molecular dynamics time units) and Lt = 16, which is right at the
onset of the chiral transition (T ∼ 150 MeV, ∼ 20k molecular dynamics time units).

As can be appreciated from Fig. 4, in the full QCD case the signal turns out to be much noiser
than in the quenched case, with the result that only a rough estimate of mη ′ can be performed on
the low temperature (Lt = 24) lattice, by fitting numerical data obtained for the 2-smeared operator
starting from t = 5a on and leading to mη ′ = 1.3(3) GeV, while no sensible determination is still
possible on the Lt = 16 lattice.

Even if these results are still preliminary, they clearly show that noise problems, which are
encountered in standard determinations of the η ′ mass which exploit correlators of fermionic op-
erator, are met also in the case of pure gluonic operators. As a matter of fact, we are still not able
to make reliable statements about the behavior of mη ′ at the phase transition. We estimate that an
increase in statistics of at least a factor 10 is necessary to get any signal around the critical point
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Figure 4: Topological charge correlators in full QCD on Lt = 24 (left, 1 and 2-smeared operators) and
Lt = 16 (right, 2-smeared operator).

(Lt = 16), however we are also looking for strategies alternative to brute force, like using differ-
ent topological charge density operators and mixed correlators in order to optimize the signal, or
performing simulations on lattices with increased anisotropies.
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