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High density effective theory on the lattice
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Long-range interactions in finite density QCD necessitate anon-perturbative approach in order

to reliably map out the key features and spectrum of the QCD phase diagram. However, the

complex nature of the fermion determinant in this sector prohibits the use of established Monte

Carlo techniques that utilize importance sampling. Whilstsignificant progress has been made in

the low density, high temperature region, this remains a considerable challenge at mid to high

density. At large chemical potential, QCD can be approximated using high density effective

theory which is free from the sign problem at leading order. We investigate the implementation

of this theory on the lattice in conjunction with existing re-weighting techniques.
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High density effective theory on the lattice

1. Introduction

A key motivation for studying QCD at different temperaturesand pressures arises from the
need to understand the behaviour of matter in various extreme scenarios: the environment of intense
heat and pressure that existed after the big bang, the ongoing experiments in heavy ion collisions,
such as RHIC and ALICE, that aim to recreate a similar environment within the laboratory, and
the conditions that exist at the centre of a neutron star where matter is cold and very densely
packed. Furthermore, by investigating the different phases of QCD, one may gain further insight
into confinement, chiral symmetry breaking and the nature ofthe QCD vacuum, which would
contribute to our understanding of the structure of hadrons.

The behaviour of strongly interacting matter in thermal andchemical equilibrium is charac-
terised by the temperatureT and quark chemical potentialµ . The main thermodynamic properties
of QCD are summarised in the QCD phase diagram, shown in fig. 1.
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Figure 1: The QCD phase diagram.

Early attempts to map out the phase diagram revealed the existence of a deconfined phase and since
then further details about the nature and location of the transition that separates these two phases
have been uncovered. Some key features of the diagram include:

• confined hadronic matter and the QCD phase transition: We live in the phase where chiral
symmetry is broken and there is colour confinement. At low temperatures, there is a bound-
ary separating nuclear matter and the vacuum. As the temperature increases, a hadronic gas
forms. If the temperature or pressure increases beyond certain limits, the system undergoes
a phase transition, the nature of which depends on whether this is driven by an increase in
temperature or density, or, an increase in both.
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High density effective theory on the lattice

• Quark-Gluon Plasma: In this phase QCD is deconfined and quarks and gluons are the funda-
mental degrees of freedom. In addition, chiral symmetry is approximately restored.

• temperature-driven phase transition: Located alongside the temperature axis of the phase
diagram, the transition here was recently found to be a crossover [1], which places contraints
on evolutionary models of the early universe.

• critical temperature: Located at the point where the phase transition crosses the temperature
axis, the value of the critical temperature was recently calculated [2] to beT = 150(3)(3)MeV
although since the phase transition is non-singular, thereis no unique value for this quantity.

• density-driven phase transition: This transition, located along the chemical potential axis, is
expected to be first order, however, it is currently difficultto reach due to its location in a
region of intermediate density.

• critical points: A critical point is expected to occur alongthe first order phase transition as
it moves towards a temperature-driven crossover. Lattice predictions [3] locate this point
at (T,µ) = (162(2),360(40)) MeV (forNt = 4 and with large cut-off corrections expected).
Recent work [4] indicates the existence of a triple-point connecting three different phases on
the diagram, occuring at(T,µq)tri ≈ (137,300)MeV (with large cut-off corrections).

In addition to the QGP phase, analytic calculations in the cold dense region of QCD have found
alternative interaction channels leading to the prediction of colour superconductivity (2CS), where
an attraction between pairs of quarks at the Fermi surface with opposite momenta leads to the
formation of a condensate of quark cooper pairs. More recently, the phenomena of colour-flavour
locking (CFL) was predicted [5], where diquark condensatesform from three light quark flavours,
breaking colour and flavour symmetries. Given that these interactions are highly non-perturbative,
one would like to investigate these regions, together with the density-driven phase transition using
lattice QCD. However, the sign problem has proven to be a considerable barrier to the investigation
of densely packed matter.

2. The sign problem

In the lattice formulation, the expectation value of the operatorO is expressed in terms of the
discrete Path Integral (PI). Having integrated over the fermion fields, the expectation value is given
by

〈O〉 =

∫

DUO (detM)nf e−SG

∫

DU (detM)nf e−SG

whereM is the fermion matrix andnf is the number of fermion flavours. This integral is computed
numerically using standard Monte Carlo integration and in order to ensure that the background
field configurations are sampled as efficiently as possible, importance sampling techniques are
introduced, where the probability of selecting a particular configuration is weighted according to
the distributionP[U ] = 1

Z (detM)nf e−SG. The PI thus reduces to a sum over the operator evaluated
on each background configuration, but we now have the constraint that detM be interpreted as a
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probability and therefore the Dirac operator must be positive. We can establish whether this is
indeed the case by testing the “γ5-hermiticity” property:M† = γ5Mγ5. If this equation is satisfied,
either detM is real or the eigenvalues are complex but paired, and the fermion determinant can be
used to importance sample the background gauge configurations. In the case of QCD at non-zero
density, theγ5-hermiticity is spoiled by the sign of the chemical potential term and importance
sampling is prohibited. Whilst progress has been made in thelow density region, this remains a
problem at high density and we are motivated to approach the problem using an effective theory.

3. Effective theory approach to QCD at high density

In this section we examine the physical characteristics of densely packed matter and introduce
the high density effective theory (HDET) that incorporatesthe low-energy behaviour of the system.
This theory was introduced and developed by Hong in a series of papers, the first of which is given
in Ref. [6].

3.1 The physical characteristics of densely packed matter

When matter is added to a fixed volume the energy of the lowest available state increases
due to the fermionic nature of quarks. Consequently, quarksat the Fermi surface of very densely
packed matter have high momentum. An essential characteristic of such a system is that at low
energy, high-momentum gluon exchange between quarks is suppressed because of the asymptotic
nature of the QCD coupling. Typical Fermi surface interactions only change the quark momentum
by a small amount and since these interactions are soft,O(ΛQCD), they require a non-perturbative
treatment. Furthermore, the low energy degrees of freedom are restricted since quarks at low
momentum (within the Fermi sea) and antiquarks (within the Dirac sea) require high momentum
interactions to excite them due to Pauli blocking (occupation) of the states above (see fig. 2). In
essence, the only low energy dynamical degrees of freedom are the modes that lie near the Fermi
surface which are quasi quarks and holes, together with softgluons.

vacuum

Dirac sea

Fermi sea

µE > µ

Figure 2: States within the Dirac sea and deep within the Fermi sea do not contribute to the low energy
dynamics due to Pauli blocking.
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3.2 Approximating dense QCD with an effective theory

Analogously to HQET, since there is a high momentum scale which does not contribute to the
low energy dynamics, in this case near the Fermi surface, thequark momentum can be decomposed
into two pieces,pµ = µvµ

F + l µ , wherevF is the Fermi velocity and the residual partl µ is associated
with the Fermi surface interactions. In order to access these modes, the full field is expanded into
large and small components (quasi-quarks) to give

Ψ(x) = ∑
~vF

e−iµvF ·x (ψ+(~vF ,x)+ ψ−(~vF ,x)) (3.1)

where the large contribution to the momentum has been factored out leaving field components
ψ+ and ψ− that are velocity dependent and carry residual momentuml . The large and small
components are defined respectively as

ψ+(x) = eiµvF ·xP+Ψ(x) and ψ−(x) = eiµvF ·xP−Ψ(x)

with the projection operatorP± = 1
2(1±~α · v̂) and~α = γ0~γ . Since different modes of the quark

field are characterised by an associated velocity, quarks with momentum modes that differ by more
than the low energy exchanges decouple from each other and the Fermi surface (sphere) describing
all the possible momentum modes can be split into patches, each labelled by an associated velocity.
The size of a patch must be large enough to contain the low energy interactions which areO(ΛQCD).
It is possible to define the decomposition of the quark field into Fermi surface modes more precisely
[7], thus avoiding the sum over patches, however, we do not use this approach since the resulting
action cannot be discretised readily in its present form.

Using eqn. 3.1 the full QCD Lagrangian at high density can be re-expressed in terms of large
and small components, with theψ+ field describing quark modes at the Fermi surface and theψ−

field describing modes within the Dirac sea. Soft interactions cannot exciteψ− so these modes are
integrated out using the equations of motion to form a low energy effective theory that describes
the strong interactions of modes at the Fermi surface. The tree-level effective Lagrangian of high
density QCD [6] is given by

L0
hdet= ∑

v
ψv

[

iγµ
‖ Dµ −

γ0(D⊥)2

2µ ∑
n

(

−
iD‖

2µ

)n]

ψv −
1
4

Fa
µνFaµν (3.2)

where the parallel and perpendicular components of a generic four-vectorXµ are denotedXµ
‖ =

VµX ·V andXµ
⊥ = Xµ −Xµ

‖ respectively, withV = (1, ~vF ). The fields are now labelled byv instead
of +, reflecting the fact that they are velocity dependent and theindex v runs over the number
of patches. The HDET Lagrangian is a systematic expansion in1/µ and the coupling constant
αs. There are coefficients in front of each term which contain information about the short distance
physics which has been integrated out. These corrections are computed by matching the diagrams
between the effective theory and the full theory at a given order in αs. The leading order term in
the fermion action can be re-expressed asiV ·D and is therefore spin-independent, whilst the NLO
term can be written as a sum of spin-independent and spin-dependent terms.

The full dense QCD Lagrangian has now been re-expressed as aneffective Lagrangian with
µ appearing in the denominator. Provided that the residual momentum is much smaller than the
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chemical potential, this should serve as a good approximation to QCD at high density. Crucially,
the sign problem does not occur at leading order in this theory [7], thus opening up the possibility
for lattice calculations at high density.

4. HDET on the lattice

The strategy of the lattice calculation is to use the effective theory to look for evidence of
µ-dependence in a simple observable such as the plaquette. Informulating HDET on the lattice we
highlight several important details concerning the inclusion of the NLO term, an approximation to
the sum over velocities and the discretisation of the action.

4.1 Reweighting the leading order calculation

As discussed, the LO fermion operator is free from the sign problem and can therefore be used
in the importance sampling of the field configurations. This is not possible in the case of the NLO
term where the sign problem re-emerges. Since it is necessary to include this correction in order to
have explicitµ-dependence in the calculation, as well as enabling measurements at lower values of
µ , this term is incorporated into the measurement by reweighting the observable [8], such that

〈O〉 =
〈Oe−SNLO〉

〈e−SNLO〉
.

4.2 The sum over patches

The effective Lagrangian contains a sum over patches, each of which correspond to a particular
region of the Fermi surface with an associated unit velocity, ~v. The physics within each patch
is equivalent and therefore, to avoid a prohibitively expensive and complicated computation, we
compute the Lagrangian for a single patch and then multiply by an overall factor to account for the
sum. The number of patches covering the surface is given approximately byNpatch∼ (4πµ2/Λ2

⊥)

whereΛ⊥ is the cutoff on the transverse momenta. For example, given achemical potential of
1.5GeV, the number of patches is approximately 315. The fermion part of the HDET Lagrangian
(through NLO) becomes

L0
hdet= Npatchψv

[

iγµ
‖ Dµ − γ0

(D⊥)2

2µ

]

ψv

and we choose~v = (0,0,1).

4.3 Discretisation

The discretisation of the HDET fermion action follows from the usual definition for the sim-
plest form of the covariant derivative on the lattice. For~v = (0,0,1), the LO term is given by

NpatchV ·D =
Npatch

2 ∑
µ=z,t

[

Uµ(x)δx,y−µ −U†
µ(x−µ)δx,y+µ

]

(4.1)

whereV = (1,~v). The NLO term can be written as

MNLO =
Npatch

2µ
(

D2
x +D2

y + iσz[Dx,Dy]
)

(4.2)

whereσz is the usual Pauli matrix.
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5. Discussion

The LO operator that is used to generate the configurations has been tested for reversibility and
linearity of ∆H with the microcanonical step size squared. Reweighting in the NLO term has also
been incorporated and measurements are under way. The HDET code has been adapted from the
MILC code [9]. One remaining issue in the implementation of HDET on the lattice is the inclusion
of the Debye screening mass term which should be included in order to match to the full theory
[10]. Since this contribution is not gauge invariant, it is not clear how this term can be included in
the generation of dynamical lattices and more work must be carried out in this area.

In summary, we have given a brief overview of the QCD phase diagram and highlighted the
necessity of finding an alternative approach to QCD at mid to high density on the lattice. We
have reviewed the principle features of high density effective theory and presented our strategy for
implementing this theory on the lattice. The aim of this workis to look for evidence of the density-
driven phase transition. It is not clear at this stage how lowit is possible to take the chemical
potential before the breakdown of the expansion in the effective theory, however, we are guided
by the fact that provided the residual momentuml which is O(ΛQCD) is much smaller than the
chemical potential, ie.l/µ << 1, the expansion should be valid.
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