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1. Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions. Dugetofats most
important properties, asymptotic freedom, at high temperatures it deserithéferent phase of
matter called quark-gluon plasma (QGP). The phase transition betweerdiiomicgphase of mat-
ter and QGP can be investigated by lattice simulations. The transition at zenicahpotential —
which represents the case of equal number of quarks and antiquisrk§ruge importance, since
it is relevant for both regarding the early Universe and high enertjigioms.

The 2+1 flavour QCD transition was recently found to be an analytic cves] (instead of
a first-order phase transition), which usually results in different tramsiéimperatures for different
observableq]2] and to a broadening of the equation of state arounctisitibn temperaturé][3].
These works were carried out using physical quark masses; nelesshdifferent values of the
guark masses can also have relevance. For three massless quareatefrom QCD effective
models, that a first-order phase transition takes place. For infinite quarkesiéwhich describe
pure gauge theory) lattice results indicate that there is also a first-ordsttiva. For two massless
flavours a second-order transition is expected. We can summarize @ulekige on figuré]1.

O(4)

Cross—over region

P physical point!

Z(2)

Myg

Figure 1: The phase diagram of QCD. First-order and crossover regi@separated by second-order lines.
For the one pointed towards by the arrow we expect a Z(2) wsaligy class. The exact position of the line
is to be determined.

There are second-order phase transition lines, that separate tr@destand crossover re-
gions. For the 2 flavour case, the universality class of the phase linedscd to be O(4)[]4],
while for the 2+1 case, we expect Z(2). However, the exact positighieflatter phase line still
needs to be determined with adequate accuracy. In the wofk of [5] thse fiha is found to be at
about 80% of the physical quark mass lgn = 4 lattices with the unimproved staggered action.
The same authors have presented tNeie= 6 study at the present conferenfe [6]. Based on the re-
sults about the strength of the transition for different lattice spacings iatidfetization schemes,
one expects that reducing the discretization errors results in a weakgtita. In agreement with
this expectation they observed that the first-order region shrinks, anghtysical point is farther
from the phase line.

The location of the second-order line has high importance, since combiriedhe curva-
ture of the phase surface (in time— p space), it can influence the positidi [}, 8] (or even the
existence[[p]) of the critical endpoint on the QCD phase diagram.
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In this paper we give estimates and upper bounds for the critical mass g meanalyzing
the behaviour of some quantities that are sensitive to the nature of the jpliasigéon. These
guantities will be the susceptibility and the Binder cumulant of the chiral caaten It will turn
out, that the latter is more trustworthy in locating the second-order line, theless, we present
results here regarding both quantities.

2. Second-order behaviour

First we discuss what kind of behaviour we expect from the susceptiaiitifrom the Binder
cumulant in the vicinity of a second-order line. Then we carry out lattice simouakfor different
guark masses, and compare them with the expectations.

2.1 Thechiral susceptibility

The susceptibility of the chiral condensate is defineg@as = "‘;"—#. At the transition temper-
ature it is supposed to show a pronounced peak. Distinguishing betwsteorfler, second-order
transitions and crossovers can be achieved by finite-size scaling of momperties of this peak.
Particularly, for second-order transitions, the height of the peakidluixerge at the critical point.
We can observe this behaviour in a statistical physical approach. @er parameter of the tran-
sition is the chiral condensatgy, the reduced temperaturetiss (T — T¢)/Tc, and the external
field, which breaks the symmetry is the quark massThe definitions of the critical indices, y,
ando¢ are:

Py ~It1F, Xgy~Itl, PPll—o~m (2.1)
Now let’s take the derivative of the last proportionality with respecehi@o the susceptibility
can be expressed as a function of the quark mass. This will determine Bdweitiht of the peak
grows while reducing the mass.
Xgwl—o ~ms (2.2)

From the first and third proportionality i (2.1) we can also obtain how the atiteamperature
depends on the quark mass:
1
|t| ~ mes (2.3)

It is worth mentioning that if we start from the second proportionality Tn (2rt) from (2.2), then
we obtaint| ~ m%, which is identical to[(2]3) (c.f. thg = £(& — 1) scaling rule).

In the following we will analyze the susceptibility peak as a functioBef 6/g?. Since we
restrict ourselves to the interval around the critical temperature, wheritiction3(T) can be
linearized, this means that in the above formulae we can substitute the rddogaerature with
(the reducedp.

The critical exponents in question can be looked up in the literature for thedtitey univer-
sality classes; these values are summarized in the next fhble [9]:

| 1/e5 | 1/6-1
3D Ising | 0.633] -0.785
3D O(2) | 0.598| -0.794
3D O(4) | 0.537| -0.794
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2.2 TheBinder cumulant

The cumulant is another useful quantity to distinguish between differeestypphase transi-
tions. Roughly, it measures how much the distribution of the order parameteGsussian type.
Its definition for the chiral condensate is as follows:

__ {(ogy)t)
AT @4
whered denotes the deviation from the averagedgop = Yy — (Y). The actual value of the
cumulant can be easily calculated for different distributions. We showllyzathe distribution of

Y in the infinite volume limit, at the critical temperature. For a first-order transitiordiiei-
bution consists of two Dirac-deltas, for whigy, = 1. For a crossover we have one Dirac-delta,
which is (through a series of finite volumes) approached by Gaussiatidos getting narrower
and narrower. In this cadyy ~ 3. For second-order transitions the value of the cumulant depends
on the universality class: for Z(2), that of the three-dimensional Isieglel, By, = 1.604 [10];

for O(2), Bgy = 1.242 [1]]; while for O(4) By = 1.092 [9].

3. Resaults

Our results were obtained by lattice simulations with 2+1 flavours of stagggradks. We
used Symanzik improved gauge and stout improved fermionic action; the dmiadsrning the
action and the simulation techniques are describeld i [, 2, 3]. For smalilenes (ranging from
10° x 4 to 16 x 4) up to 500-1000 configurations were generated. For larger volwpes @4 x 4
andNr = 6 simulations) we had smaller statistics, about a few hundred configurafiatecorre-
lation time was measured to be around 5, so we used every fifth configufatioreasurements.
Measurement of the chiral condensate was carried out with 60 randctors.

In order to approach the second-order line we had to carry out simuatorery small quark
masses. There are, however, limitations that we have to take into accousit.ofFal, smaller
masses increase CPU time by a factor gl Still very important is, that we have to keep the
lattice sizes much larger than the characteristic length of the system. This lenptknsby the
inverse of the pion masstgy = 1/my; ~ 1/,/m, so for smaller masses we also needed larger
lattices. Paying attention to these phenomena, we carried out simulationgfimgasses ranging
from 200% down to 5% of their physical values.

3.1 Thechiral susceptibility

For every quark mass we used, we had to search for the susceptibilkyopehe x5y — B
plane. These peaks are plotted on figjyre 2., for the cas®wf;,ys= 0.4...2. The height of the
peak increases as smaller quark masses are used, which indicatesiidstriag of the transition.

As shown by equation$ (2.2) and {2.3), the height and the position of tvestibility peak
should follow a power-like behaviour, which has a singular point (nailydical point for the case
of the position) at the critical mass of the second-order point, denoted ifoltbeving by mp.
The critical indeces for these power functions (as summarized in ffable 24 jather close to
each other, particularly for the case of the height. This means that it igiféicglt to distinguish
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Figure 2: The susceptibility peaks for different quark masses. Appty the transition gets stronger for
smaller masses, as it is shown by higher peaks.

between different universality classes from observing the behawidhese quantities. However,
if we suppose that that we are dealing with a given universality class (pat(® for our case),
than we may keep the exponent of the power function fixed, and pegditfor the critical mass.
These fits are shown on figuie 3.
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Figure 3: The position (left panel) and the height (middle panelNer= 4, right panel folNy = 6) of the
susceptibility peak as a function of the quark mass. Witiddles shown are the power function fits, with
exponents fixed at values from different universality atas@vhich give the same for the height).

We performed these fits for different fit intervals. The results from #igtit of the peak can
be seen on figurf 4. As we narrow the fit interval by excluding points withekt masses, the
estimate fomg reaches a nice plateu, which indicates that we are already in the domigemt 0&
the second-order point at smaller masses. We can obtain an upperfbourttiis analysis, which
ismy < 0.05-mypys The same procedure was done also for the case of the position of théqrea
which the fits turned out to be less stable. Nevertheless from this latter wed@®.12- mphys

3.2 TheBinder cumulant

We saw in sectioff 212., that the values of the cumulant for the second-cades and for
crossover are quite apart from each other, which makes it easier écalaore accurate estimate
for the critical mass. We measured the cumulanizat.e. atf corresponding to the position of
the peak, which almost always coincided with the minimum of the cumulant in thaetratope
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Figure 4: The singular point of the power-function fitted to the heighthe peak, versus the upper bound
of the fit interval. As largest masses are excluded from thevéitget deeper in the dominant region, where
the behaviour of the susceptibility is governed by the appate critical index.

interval. At larger masses the cumulant has a value consistent with theweosehaviour, then
closer to the critical mass it starts to decrease, and at the point with smallespmiagys= 0.05

for Nr = 4 and 01 for Ny = 6) it already reaches the value which represents the Z(2) universality
class. So the behaviour of the cumulant is consistent with the assumptiorsee g@oout figurf 1.

If we accept this scenario, than we can have an upper bound henefagay. These results are
shown on figuré]5.
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Figure 5: The value of the Binder cumulant & plotted against the quark mass for’164 (left), 24 x 4
(middle) and 18 x 6 (right). Behaviour at smaller masses indicate that theausality class of the second-
order point in question is consistent with Z(2). We have ufgmeinds fomg indicated by the blue lines.

From this analysis we can conclude for the critical massrti@mgnys < 0.07 for Ny = 4, and
Mo/ Mphys S 0.12 for Ny = 6.

3.3 Summary

The behaviour of the Binder cumulant showed that the universality cfabe second-order
line is consistent with Z(2). We also obtained upper bounds for the valtieafritical mass from
the analysis of both the chiral susceptibility and the Binder cumulant. Théiseatss suggest



The nature of the finite temperature QCD transition as a fiamcdbf the quark masses

G. Endidi

strongly that the critical mass is below 7% of the physical quark madsros 4 and 12% on
Nr = 6 lattices. This means that the physical point is at least about ten times facttmethe lower
left corner of the phase diagram, than the second-order phase littee fast-order region on figure
[. is exaggarated, and looks rather like as depicted on figure 6., whiah fi;mal conclusion.
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Figure 6: The lower left part of the QCD phase diagram, as a conclusionowork.
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