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1. Introduction

The thermodynamics of strongly interacting matter at finite temperature hastusied ex-
tensively. It has been shown that the QCD transition is a cross{dveFljig result is of importance
for the physics of the early universe. It is also interesting to examine tH2 giase diagram at
finite chemical potentialig # 0 which would be relevant for the description of heavy ion colli-
sions. Lattice simulations in this regime have been hindered by the sign protrsiece the
first attempts[[R]. The sign problem originates from the fact that the fermmatrix M loses its
¥ hermiticity at finite chemical potentidll # yMTys. Thus the fermion determinant déd) be-
comes complex and spoils any method based on importance sampling. Theeeexad different
methods to circumvent this problem for small based on either performing simulations at imag-
inary ug and then analytically continuing the results to the physically interesting casalqig
[B] or reweighting samples produced with a real and positivée{, B]. For our calculations
we used a reweighting technique, where all observables measuredan-th@ configurations are
expanded irug. The analysis was performed using the same configurations s in [6].

2. Reweighting and Taylor expansion

The reweighting technique uses configurations generatgg &t0 (where the fermion deter-
minant is real and positive), to access observables finite chemical potential.

20 & [det(M(ug))"*) &SP
o) =
7 J 72U [det(M(ug)"*] &Sil6)

_Jwow [det(M(0))"/*] & (6 (o),

f@uw[det(M(O))”f/ﬂ e s (W)

o detMEe)™ " g5 )
det(M(0))"/4

The expectation valugZ) at ug andf is rewritten as the ratio of two expectation valuegigt= 0
andpfp. The chemical potential range where the reweighting is effective is limiteddogebreasing
overlap between the sample generatedgat 0 and the target ensembleat # 0. As the distri-
bution of the sample becomes narrower with increasing volume the overlaleprgets also more
severe, thus requiring higher statistics when approaching the continuumifimmitjuite expensive
to calculate the determinant d&(ug)) exactly, especially for large lattices. For that reason we
decided to use a Taylor expansioniin This technique has been used several times, especially by
the Bielefeld-Swansea Collaboration (for a recent paper with sixth exfgansion sed]7]). For
gluonic observables which do not depend on the chemical potential expiigglgxpansion is very
easy to perform.
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and

2
0, = 10° (Indet(M(ug))] = }tr(M’lM”— M~IM'M~IM) (2.4)
4 0us 4
Hq=0
One can also note, that g = 0 the odd order derivatives of Ind@dl (L)) are purely imaginary
and the even order derivatives are real. This follows from the fermidrixmdentity:

M (Hg) = VM (—ig) ¥6 (2.5)

Therefore it is clear that for a real observable the linear term in thensiquais zero.

3. Observables

All observables that we compute in this work namely the Polyakov loop andrdrege quark
number susceptibility do not depend explicitly pg and can thus be expanded like gluonic ob-
servables.

3.1 Polyakov loop

The Polyakov loop is given by the trace over a product of gauge linkgyadoline in time
direction:

P:,\:::gZtr[U4(x,O)U4(X,1).--U4(X7Nt—1)] (3.1)

In pure gauge theory a change in the expectation value of the Polyakpudam non-vanishing
value signals the spontaneous breakdown of the Z(3) symmetry and thaegéeof deconfine-
ment. The Polyakov loop is also related to the quark-antiquark free eaengfjnite separation:

[(P)|? = exp(—AFgq(r — ) (3.2)

HereAFyq denotes the difference of the free energies of the quark-gluon plagimand without

the quark-antiquark pair. It is then possible to renormalize the Polyakgvdpoenormalizing the
free energy of the quark-antiquark pair. For that purpose onetheg®normalization condition
VR(ro) = 0 to renormalize the potential @ = O for each lattice spacing][6]. As the ultraviolet
divergencies are the sameTat= 0 as at finiteT the same renormalization shift can then be used to
renormalize the free energy. The renormalized Polyakov loop is given by

[(Fr)| = |(P)] exp(V (ro)/(2T)), (3.3)

whereV (rp) is the unrenormalized = 0 potential obtained from Wilson-loops. The transition
temperature can be defined as the peak in the temperature derivativeRaflyla&ov loop, that is
the inflection point of the Polyakov loop curve.

We also note that the linear term in the Taylor expansion of the Polyakov lamgrdés This
can be shown by using the CPT symmelfly [8]. It is enough to showgt= (P)Z. This follows
from the CPT transformation of the expectation value of the Polyakov loop:

<P>IJ _ <P>;31PT _ /gu CPTe—Sg(UCPT) det(M“ (U CPT)) PCPT

— [7ue S [detm, u)] P = ((P),) (3.4)
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3.2 Strange quark number susceptibility

The strange quark number susceptibijtyis defined by

Xs 1 9%logZ
TZ2° TV o2

(3.5)
ps=0

It can be related to the event-by-event fluctuations in heavy-ion expetsmes xs has a well
defined continuum limit, renormalization is not necessary. The transition tatapercan be de-
fined as the peak in the temperature derivative of the strange quark nsogmeptibility, that is
the inflection point of the susceptibility curve.

As the strange quark number susceptibility is a real observable the lineamténepug ex-
pansion vanishes as was shown above.

4. Simulation Setup

We used a Symanzik improved gauge and stout-link improved staggered rigsitaitiice ac-
tion in order to reduce taste violatidr [9]. The configurations were gestbreith an exact RHMC
algorithm. We determined a line of constant physics (LCP) using physicaesder the light
quarksmy 4 as well as for the strange quark. The LCP was fixed by settingk / fx andmk /my;
to their physical valued]6]. We used four different lattice spacgs 4,6,8,10 with an aspect
ratio of Ns/N: = 4. The scale was fixed bfk and its unambiguity checked by calculating..,
fr andrg. The operator®; andO, were computed using a random noise estimator for the traces.
The number of random vectors was chosen to give an error of the szeresshe statistical error.
It was between 50 and 160 in all cases.
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Figure 1. On the left hand side the temperature dependence of thetexipacvalue of the Polyakov loop
is shown forpa= 0 andua= 0.1. The graph on the right hand side depicts the temperatypendience of
the strange quark number susceptibility foa = 0 andua = 0.1. The results were obtained on the= 6
lattices.
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Figure 1 shows the Polyakov loop and the strange quark number suddgptib ya= 0 and
pa=0.1atN; = 6. We want to compute the curvatukeof the phase transition line aig = 0,
which we define by

12
Tus) =T, <1— K TE) (5.1)
C
that is
K:_ndR%@ . (5.2)
dug |0

Here it is assumed that the phase transition line can be well described bgiyaguadratic term in
Us, Whereas the fourth order term is negligible. Now we use

/ 90
15=0 oT

to directly extract the curvature frodv’/du3 andd ¢’ /dT. Hered stands for the Polyakov loop or
the strange quark number susceptibility respectively. Figure 2 shdwdTe(us)/dus computed

by dTe(us)/dus = dxs/ U3 (d)(s/aT)‘1 for theN; = 4 lattices. We use an average over the points
nearT.(ug = O) to extract the curvature d and can thus increase the statistics.

dTc(Us)
dp3
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Figure 2: This plot shows the-T.dTe(ug)/du3 computed bydT(ug)/du3 = dxs/du3 (xs/dT)* for
theN; = 4 lattices.

In our cased @ /du3 is directly given by the quadratic term in the expansion. Whereas
d0'/dT can be extracted from a fit to the Polyakov loop and the quark numbegstilsitity near
T.. For one point we also calculat&®’/dué by exact determinant evaluatiop J10] and found a
perfect agreement.

We determine the error of the curvature by carrying out the whole andiysidifferent
jackknife-samples and by varying the fit range.

To extract the continuum limit of one needs at least three points in the scaling region. It was
established in]6] that oux = 4 lattices aren’t in this region. Thus we use te= 6,8,10 results
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Figure 3. The left plot shows the phasediagram in e T plane for the lattice spacing; = 4. The red
curves give the crossover line computed by finding the inflagboint of the Polyakov loop, the black one
corresponds to the computations using the strange quarkensusceptibility. The big errorbars at the start
of the curve denote the total error &f(u = 0), the smaller errorbars include just the error of the ghift

As the phasediagram was extracted from a Taylor expansisioitly correct to leading order. On the right
hand side the lattice spacing dependence of the curvatisgrdisplayed. No safe continuum extrapolation is
possible with our present statistics. Here the red and Biaek correspond to the results obtained from the
Polyakov loop and the strange quark number susceptibdipectively.

for the extrapolation, see Figure 3. Unfortunately the present statistiteeft\; = 10 lattices is
very limited and thus the errors are large. It is an ongoing project to iserth& statistics to give a
reliable continuum value for the curvature.

6. Summary

We have computed the curvatweof the u-T pseudocritical line atis = 0. The simulations
were performed at physical quark masses with= 2+ 1 flavours for 4 different lattice spacings.
We used a Taylor expansion jup of the Polyakov loop and the strange quark mass susceptibility
and determined their inflection points in order to locate the crossover line.
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