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1. Introduction

The quark number (baryon number) susceptibility is an observable which is one of the sig-
nature of the quark-gluon plasma in heavy ion collision experiments [1]. Thus, it is of interest
to accurately calculate the quark number susceptibility theoretically. In weak-coupling perturba-
tion theory, the susceptibility of the quark-gluon plasma has been calculated up to orderg6 ln1/g
[2]. Because of the asymptotic freedom, at high enough temperatures the perturbation theory is a
valid approach. However, the convergence of the perturbative series is bad at physically accessible
temperatures, and the applicability of the results is not obvious, see Fig. 1. The order-by-order
behaviour of the susceptibility is not systematic, and the low-temperature behaviour changes qual-
itatively at ordersg3 andg5. Further, if we allow variations in the unknownO(g6)-coefficient in
the expansion (Fig. 1 right), we obtain quite large variation in the final result at temperatures under
10Tc.

The quark number susceptibility has also been studied with lattice simulations [3, 4]. While
the standard lattice methods (with dynamical fermions) arethe best method to study QCD in the
immediate vicinity of the phase transition, at higher temperatures it is more economical to simulate
dimensionally reduced effective theory, electrostatic QCD (EQCD) [5]. This method has already
been used to calculate the pressure in quark-gluon plasma [6]. Here we present the updated results
of simulations of quark number susceptibility forNf = 2 [7] for zero chemical potential. We also
present preliminary results from simulations extended to finite chemical potential. These results are
obtained by doing simulations with imaginary values of the chemical potential and then analytically
continuing to the real values. This is achieved by fitting a polynomial of µ2 to the data.
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Figure 1: Left: The perturbative expansion of quark number susceptibilityorder by order forNf = 2. The
coefficient at orderg6 has been fixed here to match the lattice measurements.Right: The effect of changing

the value of the unknownO(g6) coefficient, parametrised asC(Nf )
(

g2

4π2

)3
. The perturbative results are

from [2] and the lattice results from [3, 4].
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2. Susceptibility in electrostatic QCD

EQCD is defined by the action

SE =
∫

d3x

{

1
2

Tr[F2
i j ]+Tr[Di,A0]

2 +m2
3Tr[A2

0]+ iγ3Tr[A3
0]+λ3(Tr[A2

0])
2
}

, (2.1)

whereFi j = ∂iA j −∂ jAi + ig3[Ai ,A j ] andDi = ∂i + ig3Ai. Fi j , Ai andA0 are traceless 3×3 Hermitean
matrices (A0 = Aa

0Ta, etc). The coupling and the mass parametersg3, m3, γ3 andλ3 are determined
by the physical 4d temperature, renormalization scaleΛMS, chemical potentialµ and the number
of massless fermions. It is convenient to use the dimensionless ratios

y =
m2

3

g4
3

, x =
λ3

g2
3

, z=
γ3

g3
3

, (2.2)

which determine the physical properties of EQCD. Theµ-dependence of the parameters is, at 1-
loop level,

y = yµ=0

(

1+∑
f

µ̄2
f

3
2Nc +Nf

)

, z= ∑
f

µ̄ f

3π
, x = xµ=0 , (2.3)

whereµ̄ = µ/(πT) and theµ = 0 expressions can be found in ref. [5]. The two loop corrections
have been calculated in ref. [8], but the effects remain in practice negligible.

The quantity we are interested in is the quark number susceptibility, which we define as a
derivative over one flavoru only:

χ3 ≡
1
V

∂ 2

∂ µ2
u

lnZ =
1
V

∂ 2

∂ µ2
u

ln
∫

DAkA0exp(−SE) (2.4)

SubstitutingSE from (2.1) we arrive at the result

χ3 = −
6

2Nc+Nf
yµ=0〈TrA2

0〉

+
1

V9π2

∫

d3r1d3r2
(

〈TrA3
0(r1)TrA3

0(r2)〉− 〈TrA3
0〉

2)

+
36

V(2Nc +Nf )2 µ̄2
u y2

µ=0

∫

d3r1d3r2
(

〈TrA2
0(r1)TrA2

0(r2)〉− 〈TrA2
0〉

2) . (2.5)

Thus, the quark number susceptibility is obtained by measuring the condensates〈TrA2
0〉, 〈(TrA2

0)
2〉

and〈(TrA3
0)

2〉 on the lattice. Due to the superrenormalizable nature of thetheory, measurements
can be rigorously converted toMS scheme in the lattice continuum limit, and becauseMS was used
in the perturbative matching to 4d QCD, this also allows us tocompare to 4d results.

The lattice counterterms needed for the continuum limit of〈TrA2
0〉 are given in [5], and of

V〈TrA3
0(r1)TrA3

0(r2)〉 in [7]. The contribution including〈TrA2
0(r1)TrA2

0(r2)〉 is not UV divergent
and thus does not require counterterms.

Finally, the relation betweenχ3 and the true 4d susceptibility is

χ =
g6

3

T3 χ3 +
∂ 2

∂ µ2
u

∆p, (2.6)

where∆p = pQCD− p3d is the perturbative 3d→4d matching coefficient for pressure, and can be
found in [9].
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Figure 2: Continuum extrapolations ofV(〈(TrA2
0)

2〉− 〈TrA2
0〉

2) andV(〈(TrA3
0)

2〉− 〈TrA3
0〉

2).

3. Lattice measurements

Lattice simulations are carried out forNf = 2. We use 6 different values of chemical potential
µ , and for each value ofµ we use eight different values of temperatureT. For each of these(µ ,T)-
pairs we use five different values of the lattice spacinga, in order to obtain a reliable continuum
limit. To check the finite volume effects we did simulations with different volumes at the smallest
lattice spacing; for a detailed analysis in a related theorysee [10].

Precise continuum limits are necessary for accurate determination of χ3. For the condensate
〈TrA2

0〉 we use a fit ansatz of form

c1 +
c2

β
+

c′2
β

log(β )+
c3

β 2 , (3.1)

whereβ = 6/(g2
3a). The existence of the logarithmic term increases the final errors significantly.

However, the coefficients of the above ansatz are perturbatively calculable, and there is an ongoing
program to determine the coefficient of the log-term using stochastic perturbation theory [11]. The
knowledge of this would reduce the errors by order of magnitude.

The contributionsV(〈(TrA2
0)

2〉− 〈TrA2
0〉

2) andV(〈(TrA3
0)

2〉− 〈TrA3
0〉

2) are fitted with second
order polynomial ansatz

c1 +
c2

β
+

c3

β 2 . (3.2)
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Figure 3: Simulations done with two different(x,y)-pairs while varying the imaginary chemical potential
in the range 0≤ −iz ≤ 0.15. Within our accuracy varyingiz does change the results, making analytic
continuation straightforward.

This fits the data well, see Fig. 2.

We study the chemical potential dependence by using imaginary µ and performing analytical
continuation. However, this turns out to be rather trivial:for fixedx,y the dependence of the results
on iz ∝ iµ is very small and not visible within our statistical errors,see Fig. 3. (However, see the
note above about the statistical errors in〈A2

0〉.) Thus, theµ-dependence of the results is, in practice,
completely due to theµ-dependence ofy.

The final continuum extrapolated results agree well with theperturbative susceptibility. It is
of the form

χpert = a1y3/2 +a2y+a3y1/2 +a4. (3.3)

Hence the difference of lattice and perturbation theory should behave asy−1/2, which is the case,
as can be seen in Fig. 3.
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Figure 4: Left: The quark number susceptibility in EQCD, with different values of chemical potential in di-
mensionless units. The solid lines are the perturbative result. Right: The difference between the perturbative
and lattice results. (TheT-scale on the top of the figures corresponds toz= 0 case.)
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Figure 5: The susceptibility in 4d units atµ = 0. The results agree with 4d lattice simulation results.
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After the matching to 4d QCD we obtain the susceptibility in physical units. Our results
significantly deviate downwards from the perturbation theory, as can be seen from Fig. 5, bringing
the results closer to the recent simulations by Karsch et al.[4]. However, one should bear in
mind that our results suffer from a matching ambiguity related to the unknownO(g6) coefficient
in perturbation theory, see Fig. 1, and the results need to bematched to a known point (4d lattice
simulation) at some low temperature. Nevertheless, we can say that the deviation from perturbative
result is still rather large at 10Tc. See Fig.5.
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