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1. Introduction

The quark number (baryon number) susceptibility is an olzd#e which is one of the sig-
nature of the quark-gluon plasma in heavy ion collision expents [1]. Thus, it is of interest
to accurately calculate the quark number susceptibiligotatically. In weak-coupling perturba-
tion theory, the susceptibility of the quark-gluon plasnas been calculated up to ordgtin1/g
[2]. Because of the asymptotic freedom, at high enough teatynes the perturbation theory is a
valid approach. However, the convergence of the pertubatries is bad at physically accessible
temperatures, and the applicability of the results is nofiais, see Fig. 1. The order-by-order
behaviour of the susceptibility is not systematic, and tvetemperature behaviour changes qual-
itatively at ordersg® andg®. Further, if we allow variations in the unknow®(g®)-coefficient in
the expansion (Fig. 1 right), we obtain quite large varmiiothe final result at temperatures under
10T.

The quark number susceptibility has also been studied atticé simulations [3, 4]. While
the standard lattice methods (with dynamical fermions)thesbest method to study QCD in the
immediate vicinity of the phase transition, at higher terapges it is more economical to simulate
dimensionally reduced effective theory, electrostaticBEQCD) [5]. This method has already
been used to calculate the pressure in quark-gluon plasmedée we present the updated results
of simulations of quark number susceptibility fidf = 2 [7] for zero chemical potential. We also
present preliminary results from simulations extendedivefichemical potential. These results are
obtained by doing simulations with imaginary values of theroical potential and then analytically
continuing to the real values. This is achieved by fitting lypomial of u? to the data.
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Figure 1. Left: The perturbative expansion of quark number susceptitlitier by order folN; = 2. The
coefficient at ordeg® has been fixed here to match the lattice measuremRight: The effect of changing

3
the value of the unknowm(g®) coefficient, parametrised &(Ns) (49—;) . The perturbative results are
from [2] and the lattice results from [3, 4].
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2. Susceptibility in electrostatic QCD

EQCD is defined by the action

e — [ dix{ STIRE)+ TMDL AP+ ARG TG + AaTHAG)2 ), (2)

whereF;j = dAj — 0jAi +i03[Ai, Aj] andD; = g +ig3A;. Fj, A andAg are traceless 8 3 Hermitean
matrices Ao = AjT,, etc). The coupling and the mass parameggrsns, ys andAz are determined
by the physical 4d temperature, renormalization ségjg, chemical potentias and the number
of massless fermions. It is convenient to use the dimeressniatios

A
yzﬁw x=22 =8 (2.2)

O3 O3 O3
which determine the physical properties of EQCD. Theependence of the parameters is, at 1-

loop level,

3 Us
72 -5 L = X;— .
Y =VYu=0 <1+ Z U5 NG Nf> , z 37 X = Xy—0, (2.3)

whereu = p/(nT) and thep = 0 expressions can be found in ref. [5]. The two loop corretio
have been calculated in ref. [8], but the effects remain @&cfice negligible.

The quantity we are interested in is the quark number suibdiégt which we define as a
derivative over one flavau only:

10°
Vvou

SubstitutingSe from (2.1) we arrive at the result

Y3 = In 5:"— In / DAAEXP(—SE) (2.4)

_ 6 2
X3 = — m Yu=0 (TrAg)

+V5;Ln2 /d3r1d3r2 (TrA3(r) TrA (r2)) — (TrAS)?)

+\ﬁmyﬁ 0 / dBryd®rp ((TrA3(r) TrA3(r2)) — (TrA3)?) . (2.5)

Thus, the quark number susceptibility is obtained by méaguhe condensated rA3), ((TrA3)?)
and ((TrA3)2) on the lattice. Due to the superrenormalizable nature offthery, measurements
can be rigorously converted MS scheme in the lattice continuum limit, and becaM&was used
in the perturbative matching to 4d QCD, this also allows uscimpare to 4d results.

The lattice counterterms needed for the continuum limi{ OfA3) are given in [5], and of

V(TrA3(r1)TrA3(r2)) in [7]. The contribution including{TrA3(r1)TrA3(r2)) is not UV divergent

and thus does not require counterterms.

Finally, the relation betweegiz and the true 4d susceptibility is

2
oyl
whereAp = pocp — Pzq iS the perturbative 3é-4d matching coefficient for pressure, and can be
found in [9].

%

X = 3Xs+ 5 50P (2.6)
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Figure 2: Continuum extrapolations of (((TrA3)2) — (TrA3)2) andV (((TrA3)?) — (TrA3)?).

3. Lattice measurements

Lattice simulations are carried out fbf = 2. We use 6 different values of chemical potential
U, and for each value gi we use eight different values of temperatiireFor each of thesgu, T )-
pairs we use five different values of the lattice spa@nin order to obtain a reliable continuum
limit. To check the finite volume effects we did simulationghndifferent volumes at the smallest
lattice spacing; for a detailed analysis in a related thesesy[10].
Precise continuum limits are necessary for accurate detatimn of x3. For the condensate
(TrA3) we use a fit ansatz of form
c, C. C
cut 5+ F10g(B) + .
wheref3 = 6/ (g%a). The existence of the logarithmic term increases the fimaresignificantly.
However, the coefficients of the above ansatz are pertuddpitalculable, and there is an ongoing
program to determine the coefficient of the log-term usinglsastic perturbation theory [11]. The
knowledge of this would reduce the errors by order of magigtu
The contributions/ ({(TrA3)2) — (TrA3)2) andV (((TrA3)?) — (TrA3)?) are fitted with second
order polynomial ansatz

(3.1)

C2 C3
C1+—

3T (3.2)
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Figure 3: Simulations done with two differer{k, y)-pairs while varying the imaginary chemical potential
in the range X —iz < 0.15. Within our accuracy varyingg does change the results, making analytic
continuation straightforward.

This fits the data well, see Fig. 2.

We study the chemical potential dependence by using imagpnand performing analytical
continuation. However, this turns out to be rather triviak. fixed x,y the dependence of the results
onizOiu is very small and not visible within our statistical errosge Fig. 3. (However, see the
note above about the statistical error$A§>.) Thus, theu-dependence of the results is, in practice,
completely due to th@-dependence of.

The final continuum extrapolated results agree well withpgheurbative susceptibility. It is
of the form

Xpert= a1y®/? + apy + agy"/% + ay. (3.3)

Hence the difference of lattice and perturbation theoryukhbehave ag—%/2, which is the case,
as can be seen in Fig. 3.
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Figure4: Left: The quark number susceptibility in EQCD, with diffeteszalues of chemical potential in di-
mensionless units. The solid lines are the perturbativdtteRight: The difference between the perturbative
and lattice results. (Th&-scale on the top of the figures corresponds+e0 case.)
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Figure5: The susceptibility in 4d units at = 0. The results agree with 4d lattice simulation results.
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After the matching to 4d QCD we aobtain the susceptibility imygical units. Our results

significantly deviate downwards from the perturbation tlyeas can be seen from Fig. 5, bringing
the results closer to the recent simulations by Karsch efdfl. However, one should bear in
mind that our results suffer from a matching ambiguity retato the unknowrD(g®) coefficient
in perturbation theory, see Fig. 1, and the results need todtehed to a known point (4d lattice
simulation) at some low temperature. Nevertheless, we @gathat the deviation from perturbative
result is still rather large at 1Q. See Fig.5.
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