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Quark free energy

1. Introduction

Our aim is to compute the free energy of a static quark-aatlkqyair. There are several
measurements on this quantity in the literature (for repebtications cf. [1, 2, 3, 4]). Here we go
beyond these computations, we use physical quark masseeedodn a careful continuum limit
extrapolation with the necessary renormalization procedu

The quark-antiquark free energy can be expressed as d¢oreetd Polyakov loops:

e /T~ S (TrP(x) TrPT(x+ 1)), (1.1)

wherer is a vector in the spacial directioil,= 1/(N;a) is the temperature andruns over all the
spatial lattice sitesP is the Polyakov loop

Ne—1
P(x) = [ Ua(x,xa), (1.2)
X4=0

whereU,, (x) € SU(3) is the link gauge field.

In pure gauge theory we expect that the Polyakov loop cdoelzehaves Coulomb-like at
short distances. In the deconfined phase the Coulomb beliadoreened at large distances, the
exponential range defines the screening mass. In the corfimesk the free energy is linearly
rising, the derivative of the rise is the string tension. sTbehavior can give an account for the
guark confinement and Regge trajectories at zero temperatur

The above picture is modified, however, when we include dycamuarks. At large distances
it is favorable to generate a quark-antiquark pair from thewam, which then screens the color
field between the two Polyakov loops [5]. From this point (#eng breaking scale) the lowest
energy level will be insensitive of the position of the heayyarks, resulting in a constant free
energy. The value of this constant restricts the possibimthstate energies, calculated in the
given potential, as no bound state can be formed with enarggl then the maximum energy.

At finite temperature the above picture persists, but we ¢sm lzave general expectations
about the temperature dependence. Physically we expadhthahermal vacuum it is easier to
generate a quark-antiquark pair thanTat 0, since there are thermally excited particles around
which can scatter on the gluonic string between the stackgantiquark pair. The gluonic string,
being excited itself, can more easily break into a dynamycerk-antiquark pair. This suggests
that the string breaking scale and so the flattened free gnalge decreases with the temperature.
This dynamical picture coincides with the thermodynamedqdectation. The negative temperature
derivative of the free energy is the entropy, which must b&tpe in a stable system:

T, = Sy(r,T) > 0. (1.3)

This formula should be true for amy sincer here is just a parameter, telling the position of the
fixed Polyakov loops. As a consequence we expect that at anytpe quark-antiquark free energy
decreases with the temperature. This condition can be aorieny check for the correctness of the
renormalization procedure.

String breaking effects compete with screening. If the frmergy is screened before it can
rise to the string breaking scale, then screening winsraike the string breaking effect. But the
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main features of the free energy are the same in both casese Biere is no phase transition in
QCD, the two regimes are connected with each other contsiyou

2. Renormalization

When we approach the continuum limit, the value of the unmeatized free energy diverges.
This is because in a single Polyakov loop the self-energywergent. We expect:

(TrP(x))| =e Cl@Na_ gC@/T (2.1)
div
whereC(a) — o in the continuum limit. At finitea the specific value o€(a) has no physical
meaning, since it depends on how we define the “divergenit pihe self-energy (renormalization
scheme). Although the constadta) can be chosen in different ways, it is important that it sHoul
only depend on the lattice spacing. In the literature thezesaveral ways to fix this constant [3, 6].
Subtracting the divergent part from the free energy, themealized free energy can be defined
as
e Faa AT — g FulrA/TC@/T o FleN(y g) = Fgg(r,a) —2C(a).  (2.2)

A possible way of fixingC(a) is to take a physical observable basedg and requiring that
it should be independent af We emphasize that there is no restriction on the physicanhtify
other than it must be fixed and be finiteHfq is finite. It needs not to be a zero temperature
observable. In fact, the most useful quantity in our cakmtawas the constant value of the free
energy after the string breaking/screening, at a fixed teatpe. We kept this value 0 for &l
that is we have chosen the const@ga) as

ZC(a) = FQ_Q(r - o°7a7T0)7 (23)

with a fixed Ty (its value wasly = 190 MeV in the calculation). The renormalized free energy
therefore reads at any temperatures as

Fégn(r,a,T) = Fgq(r,a,T) — Fgq(r — «,a,To). (2.4)

3. Results

We used Symanzik improved gauge- and stout improved staddermionic actions. The
parameters of the action were the same as in Refs. [7]. Tablaninarizes the lattices we used
for the measurements. These are the same gauge configarasoim Ref [8]. We measured
the Polyakov loop correlator for each possiblevalues which could fit in the half-size of the
spatial extent. Next we averaged the correlator for digsne= v/r2, including on- and off-axis
contributions. Note, that we take the continuum limit, westation invariance should be restored.
We binned the data according to the lattice spacing, avegagolyakov loop correlators with the
samen = (int)(r +0.5). From the binned Polyakov loops we computed the binned fneegg as
Faan = IN(PP),/(Nta). Thea(p) function was taken from the lines of constant physics detexth
earlier for these set of lattices in [8, 9]. There the condifior the determination g8 and the quark
masses was to keep the ratios of the physical values;pfx andmk fixed at zero temperature.
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| geometry | Brange | #ofp values|
16° x 4 3.2-3425 19
243 % 6 3.45 — 3705 11
38 x8 3.57-3725 7
48x 40 x 10 | 3.63 386 7

Table 1: The lattices used for the Polyakov loop correlators.
The binned free energy was renormalized in the following.wegyr eachN; and 8 we fitted
the free energies with the function

—br
ae
Frie(r) = —¢

+d. (3.1)

We then interpolated the fitted functions on edgho thef values corresponding @ = 190 MeV.
The asymptotic values of these foly; (= 4, 6,8, 10) free energies gave€_2as a function of3. The
four points and a fitted polynomial can be seen on Fig. 1. Theaf Top = 190 MeV was motivated
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Figure 1. The additive renormalization factor to the free energy, asation of 3.

by the fact that it lies already in the deconfined phase wheratatistical errors of the free energy
are much smaller than in the confined phase. At this temperttie free energy at large distances,
by definition, has no lattice spacing dependence. At neantmpératures we expect similarly good
behavior.

Once we have the value o€283) we can subtract it from all free energy values, thus having
their renormalized value. The result for temperaflire 189 MeV can be seen on Fig. 2 together
with the fitted curve. Thid = 8 point was the closest to the renormalization temperdignehere
we had raw data without interpolation.
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Figure 2: The renormalized free energy Bt= 189 MeV. The smooth curve I discussed in the text.

Since we now know the renormalized free energy for all latspacings, we can take the
continuum limit by using thé\; = 4,6,8 and 10 free energies, and extrapolate iNA~ a? — 0.
In Fig. 3 one can see the free energies at diffepgntalues forT = 200 MeV. We can see that
the lattice artefacts are smal; = 8 and 10 results almost completely coincide. Therefore @ saf
extrapolation to IN? = 0 is possible. We estimate the systematic error of this patagion by
comparing the results coming frod = 6,8,10 extrapolation ant\; = 8,10 extrapolation. The
result for the renormalized free energy at different terapees, including both the statistical and
the systematic errors, can be seen on Fig. 4.

4. Conclusions

We have determined the finite temperature renormalizeit sfaérk free energy in QCD with
dynamical staggered fermions using physical quark magsearding to our expectations, the free
energy is Coulomb-like for small distances, at larger disés it is screened and/or exhibits string
breaking, and so flattens out. An important feature of themgation was the careful renormal-
ization procedure. We fixed a physical quantity: the asytipt@lue of the free energy at= 190
MeV, which was kept zero for all lattice spacings. This defittee additive renormalization factor
for the quark-antiquark free energy as a function of théckatspacing. At different temperatures
and different distances this factor must be used to renizentthe free energy. The free energy
defined in this way is monotonically decreasing as a funaticthe temperature for all distances.
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Figure 3: The renormalized free energies fdr= 6,8 and 10.
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Figure4: The renormalized free energies in the continuum limit.
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