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1. Introduction

At high temperature, QCD matter undergoes a deconfinement transition, where ordinary had-
ronic matter transforms into strongly interacting quark-gluon plasma. In the absence of quarks,
Nf = 0, the transition is a symmetry-breaking first order transition, where the order parameter is
the thermal Wilson line. The non-zero expectation value of the Wilson line signals the breaking of
the Z(3) center symmetry of quarkless QCD at high temperatures.

The transition has been studied extensively using lattice simulations [1], but becomes com-
putationally exceedingly expensive at high temperaturesT & 5Tc. At high T, the complementary
approach has been to construct perturbatively effective theories, such as EQCD and MQCD, using
the method of dimensional reduction [2]. In the dimensionalreduction procedure, however, one
expands the temporal gauge fields around one of the Z(3) vacuaand thus explicitly violates the
center symmetry and the effective theories fail to describeQCD forT below 5Tc.

As a unification of these strategies, a 3D effective theory ofhot QCD respecting the Z(3)
symmetry has been constructed in [3]. At high temperatures,the effective theory is matched to
EQCD but still preserves the center symmetry. The effectivetheory is further connected to full
QCD by matching the domain wall profile separating two different Z(3) minima. Thus, one hopes
that the range of validity of this theory would extend down toTc.

In order to perform lattice simulations the theory has been formulated on a lattice and the
lattice theory has been matched to the continuum theory in [4]. The effective theory is super-
renormalizable, and thus the exact relations between the continuumMS and lattice regulated theo-
ries can be obtained via two-loop lattice perturbation theory.

2. Theory

The theory we are studying is defined by a three dimensional continuum action, which we
renormalize in theMS scheme

S=
∫

d3−2εx

{

1
2

TrF2
i j +Tr

(

DiZ
†DiZ

)

+V0(Z)+V1(Z)

}

, (2.1)

where

Fi j = ∂iA j −∂ jAi + ig3[Ai,A j ], Di = ∂i − ig3[Ai, ] (2.2)

andZ is a 3× 3 complex matrix, which in the limitε → 0 has dimension dimZ =
√

GeV. The
gauge fieldsAi are Hermitean traceless 3× 3 matrices and can be expressed using generators of
SU(3),Ai = Aa

i Ta, with TrTaTb = 1
2δ ab . The covariant derivative is in the adjoint representation.

The potentials are

V0(Z) = c1Tr[Z†Z]+2c2Re(Det[Z])+c3Tr[(Z†Z)2], (2.3)

V1(Z) = d1Tr[M†M]+2d2Re(Tr[M3])+d3Tr[(M†M)2], (2.4)

whereM = Z− 1
3Tr[Z]1 is the traceless part ofZ. Here, the gauge couplingg3 has a positive

mass dimension dim[g2
3] =GeV, making the theory super-renormalizable. Because of the super-

renormalizability, the coefficientsc2,c3,d2, andd3 are renormalization scale independent and only
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the mass termsc1 and d1 acquire a scale dependence in theMS renormalization scheme. The
coefficientsci , di , andg3 can be matched to the parameters of full thermal QCD by imposing
the conditions that the theory reduce to EQCD at the high temperature limit, and that the theory
reproduce the correct domain wall profile of full QCD [3]. This defines a subset of parameter values
(with a limited accuracy due to perturbative matching), forwhich the theory describes thermal
QCD. However, we consider here the theory in general, and do not restrict ourselves only to the
perturbative matching regime.

The action is invariant under local gauge transformations,with Z transforming in the adjoint
representation:

Ai(x) −→ G(x)

(

Ai(x)−
i

g3
∂i

)

G−1(x), (2.5)

Z(x) −→ G(x)Z(x)G−1(x), (2.6)

whereG(x)∈SU(3). In addition to the local transformations, the actionis invariant under the global
Z(3) transformation

Z −→ ei2πn/3Z, n = 1,2, . . . (2.7)

3. Lattice action

The lattice action corresponding to the continuum theory can be written asS= SW +SZ, where

SW = β ∑
x,i< j

[

1− 1
3

ReTr[Uµν ]

]

(3.1)

is the standard the Wilson action with the lattice coupling constantβ = 6/(ag2
3).

The kinetic term, Tr
(

DiZ†DiZ
)

, is discretized by replacing the covariant derivatives by covari-
ant lattice differences. Then the scalar sector of the action reads:

SZ = 2

(

6
β

)

∑
x,i

ReTr
[

Ẑ†Ẑ− Ẑ†(x)Ui(x)Ẑ(x+ î)U†
i (x)

]

(3.2)

+

(

6
β

)3

∑
x

(

ĉ1Tr[Ẑ†Ẑ]+2ĉ2ReDet̂Z+ ĉ3Tr[(Ẑ†Ẑ)2]+ d̂1Tr[M̂†M̂]+2d̂2ReTrM̂3 + d̂3Tr[(M̂†M̂)2]
)

.

whereĉi , d̂i ,M̂, andẐ are dimensionless. Only the mass terms ˆc1 andd̂1 require non-trivial renor-
malization and all the other terms can be matched to orderO(a0) on tree-level by simply scaling
with g3:

Z = g3Ẑ, M = g3M̂ (3.3)

c2 = g3
3ĉ2, d2 = g3

3d̂2 (3.4)

c3 = g2
3ĉ3, d3 = g2

3d̂3. (3.5)

For the mass terms, renormalization has to be carried out, sothat the long distance physics is the
same in both regularization schemes. A two-loop lattice perturbation theory calculation gives:

ĉ1 =
c1

g4
3

− 1
4π

6.3518228ˆc3β − 1
16π2

[(

64ĉ3 +
88
9

ĉ2
3

)

(logβ +0.08849)+37.0863ĉ3

]

+O(β−1)

(3.6)
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and

d̂1 =
d1

g4
3

− β
4π

(

3.17591+5.64606d̂3
)

− 1
16π2

{

41.780852+37.0863d̂3

−
(

280
9

ĉ2
3−64d̂3 +

184
3

d̂3ĉ3 +
92
3

d̂2
3 +

9
2

)

[logβ +0.08849]
}

+O(β−1). (3.7)

There are also higher order corrections (corrections of order O(β−1) corresponding to orderO(a)

in lattice spacing), but their effect vanishes in the continuum limit. Various operators have also
been renormalized in [4] on the lattice in order to convert their expectation values to continuum
regularization.

4. Phase diagram of V1(Z)

A simpler model is obtained from the original theory by settingci = 0. In this model, the trace
of Z decouples and can be integrated over as a free scalar field andthe relevant degree of freedom
is thus a traceless complex matrixM. The model is defined by the action:

S=
∫

d3x

[

1
2

TrF2
i j +TrDiM

†DiM +d1TrM†M +2d2Re(Tr[M3])+d3Tr(M†M)2
]

. (4.1)

If the cubic termd2 is zero, the Lagrangian is invariant under a U(1) global symmetry M → gM,
g∈U(1). The breaking of the symmetry is signalled by a local order parameter:

A =
√

〈Tr(M +M†)3〉2 + 〈Tr(M−M†)3〉2. (4.2)

In the symmetric phaseA is strictly zero and in the broken phase it has a non-zero vacuum ex-
pectation value, while the two phases are separated by a firstorder transition. In the broken phase
〈TrM†M〉 is larger than in the symmetric phase. After the inclusion ofthe cubic term,A is no
longer strictly an order parameter, since the U(1) symmetryis explicitly broken. However, the first
order transition remains and is accompanied with a significant discontinuity inA and〈TrM†M〉.

4.1 Lattice analysis

A non-perturbative lattice analysis has been performed to obtain the phase structure of the
model. For the simulations we used a hybrid Monte-Carlo algorithm for the scalar fields and
Kennedy-Pendleton quasi heat bath and full group overrelaxation for the link variables.

The transition was found to be of the first order for all parameter values used in the simulations
(d3 ≤ 4 andd2 ≤ 0.15) accompanied with a large latent heat and surface tension; hysteresis curves
showing discontinuity around critical point in〈TrM†M〉MS can be seen in Fig.1. The probability
distributions of TrM†M along the critical curve are very strongly separated (see Fig.2). This makes
the system change its phase very infrequently during a simulation, and a multicanonical algorithm
is needed to accommodate a phase flip in reasonable times for any system of a modest size. Even
with the multicanonical algorithm, the critical slowing restricts us to physical volumes up toV .

50/g6
3.
The pseudo-critical point was determined requiring equal probability weight for TrM†M in

both phases. The simulations were performed withβ = 12 and a lattice sizeN3 = 123, which
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Figure 1: Discontinuity in the quadratic condensate in continuum regularization〈TrM†M〉MS for d3 =

0.1,1,3. The phase transition gets weaker as the couplingd3 grows. The metastable regions shrink and
the discontinuity diminishes.

precludes the continuum extrapolation as well as the thermodynamical limit. However, these limits
were studied for one set of parameter values. The dependenceof the critical point on the lattice
spacing was beyond our resolution for the lattice spacings used and the volume dependence was
found to be of order of five per cent for the volumes used (see Fig.3 ).

The phase diagram can be seen in Fig.4. The non-perturbativecritical line measured from the
lattice follows the one-loop perturbative result for smallvalues ofd3, but for largerd3 fluctuations
make the system prefer the symmetric phase. The discontinuity in 〈TrM†M〉 along the critical
line diminishes, asd3 gets larger, but it seems that the discontinuity persists, even if its magnitude
diminishes in the limitd3 →∞ suggesting that there is a first order phase transition for any (positive)
value ofd3.
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Figure 2: Histograms of TrM†M in logarithmic scale withd2 = 0 along the critical curve. Transition channel
between the peaks weakens and the transition gets stronger for decreasingd3. Ford3/g2

3 = 0.5, the relative
probability density in the tunneling channel is suppressedby a factor∼ 10−10.

5. Conclusions

The exact relations between the lattice and continuumMS regulated formulations of the Z(3)-
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Figure 3: Volume and lattice spacing dependence of the pseudo-critical point withd3 = 2 andd2 = 0.1. The
pseudo-critical point was determined by requiring equal probability weight for TrM†M in both phases. The
lines represent linear fits. The dependence on lattice spacing and volume seem to be within 5% for the lattice
spacings and volumes used.

symmetric 3D effective theory of hot QCD have been calculated in [4]. The Lagrangians and the
operators up to cubic ones have been matched toO(a0). These results make the non-perturbative
lattice study of the theory possible.

An interesting model with non-trivial dynamics is obtainedby settingci = 0 in Eq.(2.3). The
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Figure 4: The phase diagram of the soft potential as a function ofd1,d2 andd3. First order critical line
separates two phases. Solid lines represent polynomial fitsto the lattice data points and dashed lines are the
perturbative predictions. The symmetric phase refers to the phase where withd2 = 0 the order parameter
vanishes and withd2 6= 0 is smaller than in the broken phase. On the right paneld3 = 2.
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phase diagram of this model has been determined using lattice simulations. Two distinct phases
were found, separated by a strong first order transition.

In the future, it is our goal to map out the phase diagram in thefull parameter space of the
theory, in order to search for regions in which the phase diagram would resemble that expected for
the finite-temperature SU(3) pure Yang-Mills theory.
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