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Euclidean strong coupling expansion of the partition fiorcis applied to lattice Yang-Mills the-
ory at finite temperature, i.e. for lattices with a compaetifiemporal direction. The expansions
have a finite radius of convergence and thus are valid onlg farf3., wheref3; denotes the near-
est singularity of the free energy on the real axis. The &tolestemperature range is thus the
confined regime up to the deconfinement transition. We haloeileéed the first few orders of
these expansions of the free energy density as well as thersog masses for the gauge groups
SU(2) and SU(3). The resulting free energy series can be gghum and corresponds to a glue-
ball gas of the lowest mass glueballs up to the calculatedror@ur result can be used to fix
the lower integration constant for Monte Carlo calculasiarf the thermodynamic pressure via
the integral method, and shows from first principles thathim tonfined phase this constant is
indeed exponentially small. Similarly, our results alsplain the weak temperature dependence
of glueball screening masses beldyy as observed in Monte Carlo simulations. Possibilities and
difficulties in extractingB; from the series are discussed.
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1. Introduction

Contrary to weak coupling expansions, strong coupling Bgigas are known to be convergent
series with a finite radius of convergence. In the early déiattice gauge theory they were used to
get analytical results for some physical quantities ofriedg such as glueball masses or the energy
density of lattice Yang-Mills theories. These calculatiomere done at zero temperature, i.e. at
infinite volumeNZ and temporal exterit, of the lattice.

Here we calculate such series expansions for the free ewmlemngity and screening masses
with an infinite spatial volume and a compactified temporaesionN; of the lattice. In this way
finite temperature effects are generated, giving us thertyomity to study the physical, temperature
dependent free energy density in the confined phase. Thécphgeconfinement phase transition
then corresponds to a finite convergence radius of the seriésh one may try to estimate from
the behaviour of the coefficients.

2. Freeenergy density

2.1 Cluster expansion

The partition function of the lattice Yang-Mills theory ig/gn by a functional integration of
the exponentiated Wilson action over the corresponding\3dfoup space,

B t
Z= [ DUexp|) == (TruU+TrU" —2N) |, (2.1)
[oven|s & )
2N
g

An expansion in the lattice coupling by group characterg,(U) and a cluster expansion yields
the free energy density [1]

fz—éan:—GIn oo(ﬁ)—l Y a0 []ex)". (2.2)
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whereQ =V - N, is the lattice volume andy is the expansion coefficient of the trivial represen-
tation, which has been factored out. The combinatorialofaafC) is introduced via a moment-
cumulant-formalism, and equals 1 for clust€rsvhich consist of only one so-called polymbxr.
The quantity in eq. 2.2 is customarily called a free energgneat zero physical temperature, be-
cause the path integral corresponds to a partition fundtione formally identifies with 1/T.
Here we are interested in a physical temperaiure 1/(aN ), realized by compactifying the tem-
poral extension of the lattice. The physical free energhéntobtained by subtracting the formal
(N; = ) free energy, which is analogous to a subtraction of thergemt vacuum energy in the
continuum. Thus the physical free energy density reads

f(Ng,u) = f(N,u) — f (o0, u). (2.3)

The contributing polymerX; have to be objects with a closed surface, since

[ duxu) = 0. (2.4)
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Figure 1: Graph contributing to the lowest ordés(N;,u) of the expansion of the physical free energy
density at finite temperature.

This means the group integration projects out the triviptesentation at each link. To calculate
the group integrals one uses the integration formula

[ dux V)X WU = X (vw). (2.5)

For a more detailed introduction to strong coupling caltoles we refer to [1].

2.2 Resaults

The graph contributing to the lowest order of the free endegysity is a tube of lengt; with
a cross-section of one single plaquette (fig. 1). The cantidh of these tubes together with inner
plaquettes is

SUQR):  fi(Nu) = —%u‘”\"a'\", (2.6)
SU@):  f(Nuu) = —%U‘N oM 4 N, 2.7)

whereu, v andw are the expansion parameters of the lowest dimensionatgeptations of the
corresponding gauge groups,

2
SU@): u= %Jrﬁ(ﬁz) V= ﬂJrﬁ(B“),
SURB): u= P +0(B% v= £ +0BY  w= il +0(BY), (2.8)
18 432 288
and we have used the abbreviations
a=1+3v—4u
b= 1-3u—6v+8w,
¢ = 1+3u+6v+8w— 18U°% (2.9)

Higher order contributions consist of such tubes with latssdorations of additional plaquettes
either in the fundamental or in higher representations.tf®iinteresting cases SU(2) and SU(3),
these contributions up to the calculated orders are

SU@2): f(N,u) = — %u‘”\"a'\" 1+ 12Ntu4—%i’6Ntu6+ (86N3+%§8Nt> uﬂ ,(2.10)
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which are valid only folN; > 5. For smalleiN; there are modifications of these formulae coming
from polymers with cross-sections larger than one plagudthe complete results fof = 2 and
3in SU(2) are

3 110 , 58472, 61529701
=2: fQu=- B |1-a’+=u"- 6 8 2.12
M (2.u) 2”[ U 205 Y esero V)0 212
37966 , 843898
_a. _ 12l a2 4 6 8
N=3: f(3u=-u {1 6u” + 50u 135 Y + 205 Y ], (2.13)

2.3 Free energy density asa glueball gas

Recognizing the first orders of the corresponding gluebablisas (see [2] and [3]) for SU(2)

98 20984 151496
m(AFt) = —4lnu+ 202 — =u* - 6_ 8 2.14
(A7) Ut = =205 U~ 223 1 (2.14)
26 13036 28052
EtH) = —4l 2 — —ut 6_ 8 2.1
m( ) nu+2u 3u+405u 24Bu, (2.15)
and SU(3)
27 297 858827 . 47641149
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m(A; ™) nu—3u+9u 2u u 5 u’+ 10240u + 21680 u’, (2.16)
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one can write
1
SU@2):  f(Nyu) = N [e*"WﬂNt +2eMETING guh] (2.19)
1 _
SU(3) f(Nt,U) _ _E [e—m(AI+)|\|t_|_2e—m(E++)’\|t _{_3e_m(-|—1Jr )Nt_|_ﬁ(u4)]’ (220)

corresponding to a gas of non-interacting glueballs in adradesonance-gas model [4], where

E
fo _TSe T (2.21)
2

This is a rather remarkable result. It allows to see from firgiciples that the pressue= — f

is exponentially small in the confined phase, and it expl#iessuccess of the hadron-resonance-
gas model in reproducing the confined phase equation of s3atee the partition function is not
directly measurable in Monte-Carlo simulations, the presss usually obtained by the integral
method [5], where the expectation values of derivativescamputed and then integrated numeri-
cally,

B
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Figure 2: Left: Plot of the pressure densipvs. 8 (L + M = 4 Padés for SU(2) anlsy = 3. The plot range
corresponds to the confined phase up to the critical couplRight: Plot ofp vs. T /T for SU(3) from
Monte Carlo data [5].

with § = 6Py andSy = 3(R + Ps), whereP, denotes the plaquette expectation value on symmetric
lattices andR s are those of space-time and space-space plaquettediwitiNs. The lower inte-
gration limit is usually set to zero by hand, arguing with apanentially small pressure in the low
temperature regime. Our results now justify this assumgdtiom first principles.

2.4 Phasetransition

Physical phase transitions limit the radius of convergemtdhe realB3-axis, signalled by a
singularity in the full free energy. We model the full furari from the series coefficients by Padé
approximantgL, M] with

1+au+...+au-
L,M u) = )
[LM](w) bp +biu+...+byuM

and search for the zeroes of the denominator. The resuitingl = 2, 3,4 Padé tables fdx; = 2,3
with the nearest real singularities are shown in table 1.

Zeroesyg of the Padé approximant which are very close to a singulafign indicate that the
singularity is superfluous and disappears as the full fansoapproached. Hence, removing the

SU(2): Ny =2 SU2): N =3
‘ [L,M] ‘ Uc ‘ Bc ‘ |Uc — Uo| H [L,M] ‘ Uc ‘ Bc ‘ |Uc — Uo| ‘
[1,2] | 0.4143| 1.8865| 0.0642 || [1,2] | 0.3467 | 1.5133| 0.0219
0,3] | 0.4675| 2.2201 0,3] | 0.5009 | 2.4538

[ [

2,2] | 05492 | 2.8350| 0.3419 || [2,2] | 0.4622 | 2.1853| 0.2388
[1,3] | 0.4753| 2.2725| 1.3038 || [1,3] | 0.4347| 2.0098| 0.1373
[0,4] | 0.4766 | 2.2816 [0,4] | 0.4617 | 2.1820

Table 1: Zeroes of the denominatond) and the numeratoug) of the [L,M] Padé approximants and the
corresponding value ¢i.
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singularities with a nearby zero, we obtain estimates ferdfitical couplings, which are not far
from the Monte Carlo resultg. = 1.880030) for N; = 2 andf; = 2.176830) for N; = 3 [6].

TheL+M =4 Padé’s folN; = 3, SU(2), are shown in figure (2). The spread in the curvesgive
an estimate of the systematic error of the approximantsaatttder. The exponential suppression
in the confined phase as well as the onset of the pressure ppomeahingT. is reproduced by the
strong coupling series.

3. Screening masses

3.1 Zerotemperature

Screening masses are defined by the exponential decay gbdkial correlation of suitable
operators. We used plaquette operators in our calculatibermporarily assigning separate gauge
couplings to all plaguettes, the correlator can be defindgd]as

02
InZ(B, B1pB2) : 3.1

B N2
C(z) = <TrUp1(0) TrUpz(Z)> =N 010, Bio—B

At zero temperature the exponential decay is the same asffi@iations in the time direction, and
thus determined by the gluball masses, the lowest of whichlmaxtracted as

m= — lim }In C(2). (3.2)

Z—00 7

The leading order graphs for the strong coupling seriestarens in fig. 3. This leads to the lowest
order contribution:

C(2) = AU = pe ™2, (3.3)

Thus the leading order for the screening mass is given by
ms= —4Inu(p). (3.4)

3.2 Finitetemperature

The graph contributing to the lowest order of the differebetwveen the screening masses at
zero and finite temperature is shown in figure (3). To lowedépnthe mass difference is

Amg(N) = mg(N;) —mg(oo) (3.5)
(3.6)
2., AN-6

Thus one can see that the finite temperature effect on thersngemass is very small beloW, as
is also observed in Monte Carlo simulations (for referenses [7]).
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Figure 3: Graphs contributing to the lowest order of the expansiomefdcreening mass at vanishing and
finite temperature. The correlation-plaquettes are pdibleck.

4. Conclusions

We performed explorative studies of strong coupling exjmerssat finite temperature. Our se-
ries for the free energy density is to the lowest orders ctesi with a free glueball gas. This result
justifies the neglect of the lower integration constant imetical calculations of the equation of
state by the integral method from first principles. Moreoitagives an explanation for the success
of the hadron-resonance-gas model in reproducing lattde ith the confined phase. By extrap-
olating the power series via Padé approximants and lookinghe zeroes of the denominator, it
is possible to get estimates for the critical vafgieof the deconfining phase transition, although
higher order terms seem necessary in order to obtain soraeaagchere. Finally, glueball screen-
ing masses show a weak temperature dependence in the copfiasd, consistent with what is
found in numerical simulations.
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