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1. Introduction:

Over the last decade, the QCD phase diagram as a functiompétature and baryon density
has attracted intense investigations using computer ationk and collider experiments such as
RHIC undertaken at the Brookhaven National Laboratory. niFtbhe simulation point of view,
many efforts in lattice gauge theory in the recent past wesmted to control the severe sign
problem. The proposals use a Taylor expansion with respetietbaryon chemical potential [1,
2, 3], imaginary values for the chemical potentia[4, 5, 6] or overlap enhancing techniques [7].
Despite of these successes, our knowledge of the QCD phagwdi is still limited to rather small
values of the chemical potential.

Further insights have come from QCD-like theories such asl@ur QCD [8, 9, 10], from
perturbative studies and QCD motivated models. In therlatise, one assumes that the phase
at highest densities is homogeneous and argues that quatds misaorganised in a colour super-
conducting state [11, 12, 13, 14]. Recent studies of the <Gm/eu model in the limit of many
flavours have attracted a lot of interest since it was fourad the high-density state of fermion
matter forms an inhomogeneous “baryon crystal” [15].

Good chiral properties of the fermion action is of centrapartance for an investigation of
quark matter at intermediate densities, since the higlsitletransition is driven by chiral dynam-
ics. Unfortunately, lattice fermion actions necessarilffes from the fermion doubling problem as
firstly pointed out by Nielsen and Ninomiya [16]. Nowadastaggered fermiond 7], domain wall
fermions[18] or Neuberger fermiongl9], which are an explicit realisation of the Ginsparg-$uih
relation [20], are widely used in numerical simulations. spige of these advanced formulations
and great numerical efforts, it turns out cumbersome toemehgjood chiral properties such as a
sufficiently small pion mass.

Since theworldline approachto the quark determinant does not use a lattice discradisati
of space-time, it circumvents many of these significantaliffies. Here, we will argue that the
prospects of the worldline approach are (i) exact chiralregtny but yet a fully numerical ap-
proach, (ii) analytic renormalisation and (iii) a clear cigistion of Fermi surface effects.

The worldline method is a string-inspired approach to quanfield theory; see [21] for a
review. It was further developed into a viable tool for anaéint calculation of functional de-
terminants for arbitrary background fields [22]. Subsetjyemworldline numericshas enjoyed a
wide span of applications ranging from the Casimir effe&, [24] and fermion induced quantum
interactions [25] to the description of pair production mmdmogeneous fields [26]. A worldline
lattice formulation has been presented in [27].

2. Thechiral Gross-Neveu model

2.1 Setup of the modéel

The Gross-Neveu model in its original formulation is a twondnsional fermionic theory
which shares with QCD the property of spontaneous chiralnsgtry breaking and asymptotic
freedom [28]. Due to Thies and Urlichs, the phase diagramnmagyéically known in the limit of
many flavouraN [15]. This model therefore provides for a benchmark testfoy new numerical
method which tries to extend its reach to very dense fermisystems.
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In the chiral version of this model, a pseudo-scalar figl) acts as chiral partner of the scalar
field o(x). The partition function is given by

¥ = /.@a.@rrexp{—NSfer — NS)OS}, Spos = Z—;Z/dzx [az(x) + m(x)|, (2.1)

Srer::—2Ltrln(—c92+02+n2—i¢0+ys¢7ﬂ), (2.2)

whereg is the bare coupling constant and where we have used amtitfeer Dirac matrices. The
partition function is invariant under@(1) chiral rotation of the fields:

o'(x)\ [ cosB —sin@ o(X) 2.3)
m(x) ]  \ sin@ cos@ mx) )’ '
In the largeN limit, one assumes that fluctuations of the mesons are rigiglignd that the relevant
field configurations can be obtained in leading-order sapldilet approximation:

Ser+/d2x%[az(x) - nz(x)] ZE min. (2.4)

2.2 Theworldline approach to the GN model

The key ingredient of the worldline calculation of the feomic partSe; in (2.2) is the repre-
sentation o, in terms of an ensemble average of closed loggs), T=0...T , X, (0) =x,(T),
in Euclidean spacetime. In theop cloudapproach [22], the worldlines are generated according to
the free probabilistic measure:

6(xcm[x]—xc) exp{— /onr [X;] } , (2.5)

where the loop centre of mass given by

1 /7
Xem[X] = ?/ dt x(1) (2.6)
0
is constrained ta.. The fermion determinant is then represented by
1 e dT 2 T 5
Ser = ﬁA/Azﬁ /d Xc <exp{—/o dt (o +n2)} (o, n)> , (2.7)
T
(o, m) :try@exp<i/ dr (¢70+iyg¢rr)> , (2.8)
0

whereA is a UV cutoff.

2.3 Exact chiral symmetry

In numerical calculations, a closed logfi) is represented by a finite number of points:
The spin factol” (o, i) is approximated by a path-ordered product

Fais(o,m) = try |'| Zexp(idt [do(x) + 1ydm(x)]) , (2.9)
Xi
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The crucial observation is that, in spite of the discreiisatl 4s still is exactly chirally invariant.
To show this, we define a unitary mattixkby U = cog0/2) + isin(8/2) y , and show that

do'(X) + iy (x) = U (do(x) +iywdm(x)) UT. (2.10)

Because of the path ordering and the closeness of the (tisecteloops, we easily find that (see
figure 1, left panel for an illustration)

Cais(0”, 1) = Tgis(0, 1) .

The other parts of the fermionic action (2.7) as well as thegration measure for the mesonic
fields are trivially invariant (there is no anomaly in this ded) leaving us with an exact chiral
symmetry for the discretised theory.

2.4 Renormalisation

Another big advantage of the worldline approach to fernuateterminants is that the UV
regularisation can be performed along the lines made eéplithe ab initio continuum formula-
tion. Only finite parts of the determinant must be calculdigdiumerical means. This implies that
one does not need to invoke any “ord&rmprovement which is instrumental when conventional
lattice fermions are considered. Let us illustrate the neadisation procedure for the present case.
Introducing the space-time average

1
2= 5 / d2x [02(x) + (X)), (2.11)
the fermionic action can be split into a UV divergent and adimpiart:
Ser = S(M,A) + dnio, (2.12)
. T T
o, = 8n/ /d2 exp{ / dr(02+n2)} try@exp<i/ dr (do + iys@n))
0
—2exp{-T |v|2}> , (2.13)
X
L2 /» dT )
S(M,A) = 4n/l/A2T2 exp{—T M2} . (2.14)

With this construction, the pad of the action which involves time consuming numerical siaul
tions is UV and IR finite. Accordingly, we have removed theulatpr in (2.13) by taking the limit
N\ — 0. The partS of the action contains the divergent pieces which can beitzatd explicitly;
dropping a field-independent constant, we obtain

L2

2 2
—[M2ln%+(ye 1)M2]+0<M ) (2.15)

SMA) = o

where e is Euler’'s constant. Adding the bare bosonic part of theoadm (2.1), we can impose
renormalization conditions, for instance, of Coleman-+Werg type; this defines the renormalized
coupling at an RG scalg, g~%(1) := 02S/00?|\j2—g2— 2, finally yielding,

L2 2 M2 —2TT,
S(MA) + Shos = M (InW—l> p2 e e e W), (2.16)
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Figure 1: lllustration of chiral invariance of the spin factor (lefdero-mode wave function reconstructed
from the heat kernel using free loop ensembles (right).

where we have traded the coupliggu) for an RG invariant mass scaly in the largeN limit,
reflecting dimensional transmutation. This scale also teniie largedN minimum of the action at
zero temperature and density? = M3 =const.

2.5 A numerical benchmark test
For a benchmark test, we choose a kink configuration as a baokg) field:
o(t,x) = o(x) =tanhXx), nt,x) = 0.

This kink interpolates between the two homogeneous vactaiess = +1 and is the basic build-
ing block of the ‘baryonic crystal’ of the Gross-Neveu modd]. The Dirac structure decomposes
into two Schrodinger problems for the heat-kernel traces

, Hy = —02+02i30(x). (2.17)
X dx

treexp{—TH.} = —41? <exp{—T Hi}>

On the other hand, the heat kernel expectation value cangressed in terms of the eigenmodes

of the HamiltoniarH—.. In particularH_ = —0%24+1-— 2/cosr?x gives rise to a zero mode,
2 (exp(-TH}) = |wo(P+ 3 w(9Pe s (2.18)
vVanT X ,

This choice therefore challenges the worldline approadi, the crucial question is whether a
moderate number of free loops is able to grasp the zero-maoiliution. We have calculated
the heat kernel expectation value for a range of propertiateegT of ¢/(10) using 50000 loops
consisting of 100 points per loop, all of which include theérmpo. In this propertime range, the
contributions of the excited states is small, and the madafithe zero-mode wavefunctidg|?
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can be reconstructed from (2.18) by a fit. Our numerical figslifor the modulus of the zero
mode wavefunction are compared in figure 1, right panel, Withexact result. A rather rough
discretisation of the loops already yields quite accuraselts.

3. Finitedensities

Let us consider the case of a time independent, but non-heneagis scalar fieldi(is set to
zero for illustration purposes), which is relevant for thghhdensity crystal phase. The fermion
determinant at finite temperatureg@land finite fermion chemical potentiagl in the worldline
approach is given by

1 dT on 17
Ser = 2 1//\2? Z exp{—T [? (n+1/2) - '“] } K(T), (3.1)

n

K(T) = \/% /dxC <exp{—/onT02} try@cosh<i /OTdr @a) > . (3.2)

In order to make the physics of the Fermi surface transpanenintroduce the Laplace transform
of the kernelK(T) by

K(T) = 2/0de E exd—TE? p(E), (3.3)

wherep(E) has the interpretation of the density of states. We obtain:

1= dT 2m 2
_Z/dEE expd T | int1/2) —ip| —TERY. (3.4
Ser p)21/A2T; p{ [B( /2) u] } (3.4)
The technical advantage is that we have mapped the probldeatihg numerically with the Fermi
surface onto the problem of a free particle theory with sinugrticle energf. Hence, it is well
known how to evaluate the proper time integratibmnd the Matsubara sumin (3.4). Decom-
posing the fermionic action into temperature dependentrashebendent parts, we find:

Ser = S + S (3.5)
SemP — /dE Ep(E {In[l + exp{—B(E+u)}] + In[l + exp{—B(E—u)}] } (3.6)

at . Uk 2 212
/dEEp 2///\2T B exp{ Wé+E7%} . (3.7)
Hence, the formulation offers a complete control over thesfifs associated with the Fermi sur-
face, and even the low temperature and high density regimecisssible. For instance, the small
temperature expansion (arbitrary chemical potentialhefiiaryon density is given by

1d

Bdu
Fermi surface effects can thus be studied in a systematiofasNote, however, that the numerical
calculation of the density of statggE) from the kerneK(T) in (3.3) can be cumbersome.

emp _ /dEEp( £) + Lz

51 gelEP(E)lle=y + O(T%). (3:8)
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