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Chiral Fermions Kurt Langfeld

1. Introduction:

Over the last decade, the QCD phase diagram as a function of temperature and baryon density
has attracted intense investigations using computer simulations and collider experiments such as
RHIC undertaken at the Brookhaven National Laboratory. From the simulation point of view,
many efforts in lattice gauge theory in the recent past were devoted to control the severe sign
problem. The proposals use a Taylor expansion with respect to the baryon chemical potential [1,
2, 3], imaginary values for the chemical potentialµ [4, 5, 6] or overlap enhancing techniques [7].
Despite of these successes, our knowledge of the QCD phase diagram is still limited to rather small
values of the chemical potential.

Further insights have come from QCD-like theories such as 2-colour QCD [8, 9, 10], from
perturbative studies and QCD motivated models. In the latter case, one assumes that the phase
at highest densities is homogeneous and argues that quark matter is organised in a colour super-
conducting state [11, 12, 13, 14]. Recent studies of the Gross Neveu model in the limit of many
flavours have attracted a lot of interest since it was found that the high-density state of fermion
matter forms an inhomogeneous “baryon crystal” [15].

Good chiral properties of the fermion action is of central importance for an investigation of
quark matter at intermediate densities, since the high-density transition is driven by chiral dynam-
ics. Unfortunately, lattice fermion actions necessarily suffer from the fermion doubling problem as
firstly pointed out by Nielsen and Ninomiya [16]. Nowadays,staggered fermions[17], domain wall
fermions[18] or Neuberger fermions[19], which are an explicit realisation of the Ginsparg-Wilson
relation [20], are widely used in numerical simulations. Despite of these advanced formulations
and great numerical efforts, it turns out cumbersome to achieve good chiral properties such as a
sufficiently small pion mass.

Since theworldline approachto the quark determinant does not use a lattice discretisation
of space-time, it circumvents many of these significant difficulties. Here, we will argue that the
prospects of the worldline approach are (i) exact chiral symmetry but yet a fully numerical ap-
proach, (ii) analytic renormalisation and (iii) a clear description of Fermi surface effects.

The worldline method is a string-inspired approach to quantum field theory; see [21] for a
review. It was further developed into a viable tool for an efficient calculation of functional de-
terminants for arbitrary background fields [22]. Subsequently, worldline numericshas enjoyed a
wide span of applications ranging from the Casimir effect [23, 24] and fermion induced quantum
interactions [25] to the description of pair production in inhomogeneous fields [26]. A worldline
lattice formulation has been presented in [27].

2. The chiral Gross-Neveu model

2.1 Setup of the model

The Gross-Neveu model in its original formulation is a two dimensional fermionic theory
which shares with QCD the property of spontaneous chiral symmetry breaking and asymptotic
freedom [28]. Due to Thies and Urlichs, the phase diagram is analytically known in the limit of
many flavoursN [15]. This model therefore provides for a benchmark test forany new numerical
method which tries to extend its reach to very dense fermionic systems.
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In the chiral version of this model, a pseudo-scalar fieldπ(x) acts as chiral partner of the scalar
field σ(x). The partition function is given by

Z =

∫

Dσ Dπ exp
{

−N Sfer − N Sbos

}

, Sbos=
1

2g2

∫

d2x
[

σ2(x) + π2(x)
]

, (2.1)

Sfer =
1
2

tr ln
(

−∂ 2 + σ2 + π2 − i ∂/σ + γ5 ∂/π
)

, (2.2)

whereg is the bare coupling constant and where we have used anti-hermitian Dirac matrices. The
partition function is invariant under aU(1) chiral rotation of the fields:

(

σ ′(x)
π ′(x)

)

=

(

cosθ −sinθ
sinθ cosθ

) (

σ(x)
π(x)

)

. (2.3)

In the large-N limit, one assumes that fluctuations of the mesons are negligible, and that the relevant
field configurations can be obtained in leading-order saddlepoint approximation:

Sfer +
∫

d2x
N

2g2

[

σ2(x) + π2(x)
]

σ ,π−→ min. (2.4)

2.2 The worldline approach to the GN model

The key ingredient of the worldline calculation of the fermionic partSfer in (2.2) is the repre-
sentation ofSfer in terms of an ensemble average of closed loopsxµ(τ), τ = 0. . .T , xµ(0) = xµ(T),
in Euclidean spacetime. In theloop cloudapproach [22], the worldlines are generated according to
the free probabilistic measure:

δ
(

xcm[x]−xc

)

exp

{

−
∫ T

0
dτ
[

ẋ2

4

] }

, (2.5)

where the loop centre of mass given by

xcm[x] =
1
T

∫ T

0
dτ x(τ) (2.6)

is constrained toxc. The fermion determinant is then represented by

Sfer =
1

8π

∫ ∞

1/Λ2

dT
T2

∫

d2xc

〈

exp

{

−
∫ T

0
dτ
(

σ2+ π2)
}

Γ(σ ,π)

〉

, (2.7)

Γ(σ ,π) = trγ P exp

(

i
∫ T

0
dτ (∂/σ + i γ5 ∂/π)

)

, (2.8)

whereΛ is a UV cutoff.

2.3 Exact chiral symmetry

In numerical calculations, a closed loopx(t) is represented by a finite number of points:

xi → x(ti), i = 1. . .Np, dτ = T/Np .

The spin factorΓ(σ ,π) is approximated by a path-ordered product

Γdis(σ ,π) = trγ ∏
xi

P exp(idτ [∂/σ(xi) + i γ5 ∂/π(xi)] ) , (2.9)
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The crucial observation is that, in spite of the discretisation, Γdis still is exactly chirally invariant.
To show this, we define a unitary matrixU by U = cos(θ/2) + i sin(θ/2) γ5 , and show that

∂/σ ′(x) + i γ5 ∂/π ′(x) = U (∂/σ(x) + i γ5 ∂/π(x)) U†. (2.10)

Because of the path ordering and the closeness of the (discretised) loops, we easily find that (see
figure 1, left panel for an illustration)

Γdis(σ ′,π ′) = Γdis(σ ,π) .

The other parts of the fermionic action (2.7) as well as the integration measure for the mesonic
fields are trivially invariant (there is no anomaly in this model) leaving us with an exact chiral
symmetry for the discretised theory.

2.4 Renormalisation

Another big advantage of the worldline approach to fermionic determinants is that the UV
regularisation can be performed along the lines made explicit in the ab initio continuum formula-
tion. Only finite parts of the determinant must be calculatedby numerical means. This implies that
one does not need to invoke any “order-a” improvement which is instrumental when conventional
lattice fermions are considered. Let us illustrate the renormalisation procedure for the present case.
Introducing the space-time average

M2 =
1
L2

∫

d2x [σ2(x)+ π2(x)], (2.11)

the fermionic action can be split into a UV divergent and a finite part:

Sfer = S0(M,Λ) + Sfin
fer[σ ,π] , (2.12)

Sfin
fer[σ ,π] =

1
8π

∫ ∞

0

dT
T2

∫

d2x
〈

exp

{

−
∫ T

0
dτ (σ2 + π2)

}

trγ P exp

(

i
∫ T

0
dτ (∂/σ + iγ5 ∂/π)

)

−2exp
{

−T M2}
〉

x
, (2.13)

S0(M,Λ) =
L2

4π

∫ ∞

1/Λ2

dT
T2 exp

{

−T M2} . (2.14)

With this construction, the partSfin
fer of the action which involves time consuming numerical simula-

tions is UV and IR finite. Accordingly, we have removed the regulator in (2.13) by taking the limit
Λ → ∞. The partS0 of the action contains the divergent pieces which can be calculated explicitly;
dropping a field-independent constant, we obtain

S0(M,Λ) =
L2

4π

[

M2 ln
M2

Λ2 + (γE −1) M2
]

+ O

(

M2

Λ2

)

, (2.15)

whereγE is Euler’s constant. Adding the bare bosonic part of the action in (2.1), we can impose
renormalization conditions, for instance, of Coleman-Weinberg type; this defines the renormalized
coupling at an RG scaleµ , g−2(µ) := ∂ 2S/∂σ2|M2=σ2=µ2, finally yielding,

S0(M,Λ) + Sbos =
L2

4π
M2

(

ln
M2

M2
0

−1

)

, M2
0 = µ2 e2 e−2π/g2(µ), (2.16)
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Figure 1: Illustration of chiral invariance of the spin factor (left); zero-mode wave function reconstructed
from the heat kernel using free loop ensembles (right).

where we have traded the couplingg(µ) for an RG invariant mass scaleM0 in the largeN limit,
reflecting dimensional transmutation. This scale also denotes the large-N minimum of the action at
zero temperature and density,σ2 = M2

0 =const.

2.5 A numerical benchmark test

For a benchmark test, we choose a kink configuration as a background field:

σ(t,x) = σ(x) = tanh(x) , π(t,x) = 0 .

This kink interpolates between the two homogeneous vacuum statesσ =±1 and is the basic build-
ing block of the ‘baryonic crystal’ of the Gross-Neveu model[15]. The Dirac structure decomposes
into two Schrödinger problems for the heat-kernel traces

trxexp{−TH±} =
1√
4πT

〈

exp{−TH±}
〉

x
, H± = −∂ 2 + σ2± d

dx
σ(x). (2.17)

On the other hand, the heat kernel expectation value can be expressed in terms of the eigenmodes
of the HamiltonianH±. In particular,H− = −∂ 2 +1−2/cosh2x gives rise to a zero mode,

1√
4πT

〈

exp{−TH−}
〉

x
= |ψ0(x)|2 +∑

i

|ψi(x)|2 e−TEi . (2.18)

This choice therefore challenges the worldline approach, and the crucial question is whether a
moderate number of free loops is able to grasp the zero-mode contribution. We have calculated
the heat kernel expectation value for a range of propertime valuesT of O(10) using 50000 loops
consisting of 100 points per loop, all of which include the point x. In this propertime range, the
contributions of the excited states is small, and the modulus of the zero-mode wavefunction|ψ0|2
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can be reconstructed from (2.18) by a fit. Our numerical findings for the modulus of the zero
mode wavefunction are compared in figure 1, right panel, withthe exact result. A rather rough
discretisation of the loops already yields quite accurate results.

3. Finite densities

Let us consider the case of a time independent, but non-homogeneous scalar field (π is set to
zero for illustration purposes), which is relevant for the high density crystal phase. The fermion
determinant at finite temperatures 1/β and finite fermion chemical potentialµ in the worldline
approach is given by

Sfer =
1
2

∫ ∞

1/Λ2

dT
T ∑

n
exp

{

−T

[

2π
β

(n+1/2) − iµ
]2
}

K(T) , (3.1)

K(T) =
1√

4π T

∫

dxc

〈

exp

{

−
∫ T

0
dτ σ2

}

trγ P cosh

(

i
∫ T

0
dτ ∂/σ

) 〉

. (3.2)

In order to make the physics of the Fermi surface transparent, we introduce the Laplace transform
of the kernelK(T) by

K(T) = 2
∫ ∞

0
dE E exp[−TE2] ρ(E) , (3.3)

whereρ(E) has the interpretation of the density of states. We obtain:

Sfer = 2
∫

dE Eρ(E)
1
2

∫ ∞

1/Λ2

dT
T ∑

n
exp

{

−T

[

2π
β

(n+1/2) − iµ
]2

− T E2

}

. (3.4)

The technical advantage is that we have mapped the problem ofdealing numerically with the Fermi
surface onto the problem of a free particle theory with single particle energyE. Hence, it is well
known how to evaluate the proper time integrationT and the Matsubara sumn in (3.4). Decom-
posing the fermionic action into temperature dependent andindependent parts, we find:

Sfer = Stemp
fer + S0

fer (3.5)

Stemp
fer =

∫

dE Eρ(E)

{

ln
[

1 + exp{−β (E + µ)}
]

+ ln
[

1 + exp{−β (E−µ)}
]

}

. (3.6)

S0
fer =

∫

dE Eρ(E)
1
2

∫ ∞

1/Λ2

dT
T

β
dk0

2π
exp
{

−T
[

k2
0 + E2]2

}

. (3.7)

Hence, the formulation offers a complete control over the physics associated with the Fermi sur-
face, and even the low temperature and high density regime isaccessible. For instance, the small
temperature expansion (arbitrary chemical potential) of the baryon density is given by

1
β

d
dµ

Stemp
fer =

∫ µ

0
dE Eρ(E) +

π2

6
T2 d

dE
[Eρ(E)] |E=µ + O(T4) . (3.8)

Fermi surface effects can thus be studied in a systematic fashion. Note, however, that the numerical
calculation of the density of statesρ(E) from the kernelK(T) in (3.3) can be cumbersome.
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