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QCD with two colors undergoes a transition to a superfluid phase with diquark condensate when

the quark chemical potential equals half the pion mass. We investigate the gluonic aspects of the

transition by inspecting the behavior of the glueball correlators evaluated via a multi-step smear-

ing procedure for several values of chemical potential ranging between zero and the saturation

threshold. The results are based on an analysis of 0++ glueball correlators, on a sample of 40000

independent configurations on each parameter set. The amplitudes of the correlators peak for

µ = mπ/2, indicating that the superfluid phase transition affects the gluonic sector as well. The

mass of the fundamental state decreases in the superfluid phase, and the amplitude of the propaga-

tors drops, suggesting a reduction of the gluon condensate, in agreement with model calculations.

The analysis of the smearing dependence of the results helps disentangling the role of long and

short distance phenomena at the superfluid transition.
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1. Introduction, and simulation setup

QCD-like models whose determinant remains real at nonzero chemical potential afford the
possibility of standard Monte Carlo simulations. Two-color QCD is one such model, which has
been extensively studied over the past few years. Many results have been obtained in the fermionic
sector, see e.g. [1] for a concise review, while gluodynamics is comparably much less known.
However, gluodynamics is arguably the sector where results from two-color QCD have most direct
relevance to real QCD. The few studies of finite density gluodynamics performed so far concen-
trated on the Polyakov loop [2], topological susceptibility [3] and gluon propagator [4]. In this
note - which continues a work initiated in ref. [5] – we study glueball correlators at finite density.
A more complete account of our results, with a complete set of references, will appear soon [6].
In the same paper we will present, together with the glueball spectrum, a high statistics update of
the results on the meson spectrum presented in [5]. Since the new results in the fermionic sector
merely confirm our previous findings, we will concentrate here on the glueball results.

The simulations were performed using a standard hybrid molecular dynamics algorithm for
eight continuum flavors of staggered fermions [7] on a 63×12 lattice. We accumulated 40000 MC
trajectories of unit length for each value of the chemical potential and two quark masses, m=0.05
and m=0.07.

We have measured the fermionic spectrum atµ = 0.0 , obtainingmπ = 0.56(2) andmρ =
1.4(1) for m= 0.05 , andmρ = 1.5(2) andmπ = 0,64 for m=0.07. In both casesmρ andmπ are
well resolved, with the superfluid transition atµ = mπ/ well below the threshold of the predicted
vector condensation ,µ = mρ/2[8]. Moreover,mπ/mρ < 1. implies that we are still in the region
where chiral perturbation theory can be safely applied. If, just to get an idea of the lattice spacing,
we extrapolate linearlymρ according tomρ(m) = mρ(0)−kmwe arrive atmρ(.0) = 1.1 in lattice
units.

2. Glueball measurements: operators and smearing

The operators commonly used for measuring scalar gluonic correlators exciting glueball mass
are Wilson loops. For simplicity we restricted ourselves to plaquette-like operators that can be built
from four links.

Simple glueball wave functions such as the plaquette have small overlaps with the lowest-lying
glueball states. Moreover, the overlaps become rapidly smaller as the lattice spacing is decreased.
Furthermore the plaquette couples strongly to ultraviolet fluctuations, increasing the noise in the
correlators. To have reliable glueball correlation functions at different distances, it is mandatory to
reduce statistical fluctuations.

Different smoothing procedure and methods to remove the unphysical short-distance fluctua-
tions have been introduced. A short review can be found in [9].

One of the most successful approach is the smearing method. This procedure, originally pro-
posed for pure gauge SU(3) in [10], consists in the construction of correlation functions of operators
which are a functional of the field smeared in space and not in time.

This procedure reduces the noise associated with lattice artifacts and can be iterated. Only
spatial links participate on the averaging. Thus the transfer matrix is not affected by the smearing
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procedure and remains positive definite. The values of the smearing coefficient and the iterations
are tuned in order to optimize the performance of the method [11, 12, 13].

We analyze glueball states with zero momentum in theA1++ (one-dimensional) irreducible
representations of the relevant cubic point group (on a lattice the full rotational symmetry is broken
down to only cubic symmetry). TheE++ (2-dimensional) turns out to be, as expected, extremely
noisy and in the present note we do not discuss it.

TheA++
1 andE++ representations correspond to the continuumO(3)⊗Z(2), JPC = 0++ and

2++ respectively. We can then label the associated glueballs as 0++ and 2++ states. Of course this
correspondence is not one to one but infinite to one. Therefore what we can measure is the lowest
excitation in the corresponding representation of the cubic group. With dynamical fermions mixing
is possible with fermionic states, so strictly speaking we should always use the expression ’lowest
excitation in the corresponding representation of the cubic group’ rather then ’gluebal mass’.

The glueball operators are defined by means of the plaquettesPi j (~x, t) on i j plane as in the
following:

φ
0++

(t) = tr∑
~x

[
P12(~x, t) + P23(~x, t) + P13(~x, t)

]
(2.1)

which transforms according to theA++
1 representation and couples to the scalar glueball 0++, and

φ
2++

a (t) = tr∑
~x

[
P12(~x, t) − P13(~x, t)

]
(2.2)

φ
2++

b (t) = tr∑
~x

[
P12(~x, t) + P23(~x, t) − 2P13(~x, t)

]
(2.3)

which transform both according to theE++ representations and couples to the tensor glueball 2++.
Higher levels of smearing are obtained by varying the weightw and by iterating the procedure

Ns times.
Glueball masses are calculated from the behavior of the correlation functions. We have ana-

lyzed glueball correlation as function of smearing parameters. In effect, in ref. [12], it has been
shown that to a a good approximation the two-dimensional parameters space of the number of
sweepsNs and the smearing weightw may be reduced to a single dimension via the parameter
Ts = Ns×w.

To assess the optimal parameter choice in our study, we have analyzed in some more detail
the deviations from the unidimensional parametrization. The results of Figs.1 below show that the
unidimensional parametrization remains true tillw≤ 0.3, irrespective of the number of smearing
steps, at least within the allowed range of smearing stepsNs≤ S/2, whereS is the spatial size of
the lattice.

To be on the safe side, we will base our discussions on results within the range of validity of
the unidimensional parametrization,taking into account the limitations imposed by the spatial size
of the lattice: in conclusion,w≤ 0.3,Ns≤ 3.

3. Results

3.1 Amplitudes

If we consider the cluster properties of the correlator themselves, we immediately associate
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Figure 1: Amplitude of the 0++ correlator as a function of the smearing parameterTs, smeraring steps 1 to
4, and smearing weights as indicated. ’Universality’ holds tillw≤ 0.3. µ = 0,m= 0.05 and 0.07 (upper);
µ = 0.6 and m = 0.05 and 0.07, lower

the amplitudes with plaquette susceptibilities. A second intepretation, albeit indirect, associate the
amplitude with the gluon condensate.

Interestingly, and not surprisingly! the amplitudes peak at the critical pointµc = mπ/, provid-
ing a very clean estimate of the position of the critical point itself, and a clear-cut evidence that the
critical behavious seen in the fermionic sector shows up in purely gluonic observables as well.

At largerµ, close to the saturation region, the amplitudes increase again, catching up with the
quenched results as they should (see e.g. [3]).

Note that the amplitudes are ultraviolet divergent. However, the smearing procedure[10]-
which we have reviewd above- should remove these divergencies, togheter with other short dis-
tance artifacts. In the bona fide superfluid region -mπ/2 < µ < mρ/2 our results show that the
effect of smearing is more significant that in the normal phase: this further indicates the reduction
of the soft, non-perturbative component of the propagators in this phase. Note that the gluonic
condensate contributes to the amplitude, hence the reduction of the amplitudes in the superfluid
phase is consistent with the decrease of the gluon condensate predicted by model studies [14].

3.2 The superfluid phase

The glueball propagators in the superfluid phase are amenable to a standard analysis based on
hyperbolic cosine fits, supporting the view that glueballs still exist as bound states in this phase.
The main observation - supported either by the results of the fits – see Figure3 – by the effective
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Figure 2: Zero dinstance correlations as a function ofµ for two values ofTs in the safe region, and quark
mass = 0.05(left) and 0.07
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Figure 3: Sample of fits(left) and fit results for two different time intervals as a function of the parameter
Ts = Ns×w for µ = 0.6 andm= 0.05.

mass analysis and by a direct comparisons with the normal phase (see next Section) is that the
lighest excitations in the gluonic channel in the superluid phase is ligher than in the normal phase.

The fits show that the scalar glueball looks a reasonable bound state in the superfluid phase
since it can be easily fitted to a simple cosh(mt) form. There is no direct indication of a modifica-
tion of the associated spectral function, and this holds true for both masses. Aside, it is interesting
to compare our observations with the results of a study of the glueball spectrum at nonzero temper-
ature [15, 16].

It is then meaningful to directly compare the glueball correlators in the two phases, which
is done in Figure4. These results show that the lowest excitation with 0++ quantum numbers
becomes ligher in the superfluid phase.

3.3 The critical region

In the critical region we found an unexpected oscillatory behaviour of the glueball propagator.
To a much lesser extent, this can still be perceived in the superfluid phase, although, as discussed
above, atµ = 0.6 the results are again well represented by a conventional hyperbolic cosine be-
haviour.
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Figure 4: Propagators of the scalar glueball at mass = 0.05(0.07) , left(right) in the normal and superfluid
phase, normalized to one at zero distance
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Figure 5: The oscillatory behaviour atm= .0.05, µ = 0.2 with supermposed the fit described in the text
(left). two representative results atm= 0.07 (right)

The behaviour was observed first atm= 0.05,µ = 0.2. Subsequently we did a fineµ scan of
the critical region atm= 0.07 and found evidence for the same behaviour.

The conclusion from our numerical study is that the propagators in the critical region are well
described by

C(t) = Ae−mtcos(αt) (3.1)

In words, the propagators develop complex poles in the critical region, which come in complex
conjugate pairs.

Clearly, because of the lattice periodicity in time, the possible periods are strictly quantized,
and, as soon as a very small imaginary component of the pole of the propagator develops, it man-
ifest itself in a period ofNt = 12 lattice units. Heavier poles might be observables and give rise to
smaller periods, which is probably what we observe at largeµ. They should eventually decouple
or disappear. Only a scaling analysis either withNt and with the coupling can answer this question.

3.4 Summary

We have observed a gluonic transition coincident with the superfluid transition atµ = mπ/2,
for m= 0.05 andm= 0.07, associated with a peak in the amplitude of the glueball propagator.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
0
6

Glueballs and dense QC2D Maria Paola Lombardo

In the superfluid region the (smeared) amplitude of the propagator is suppressed, signalling
a reduction of the non–perturbative, large distance contributions to the gauge dynamics - i.e. a
reduction of the gluon condensates.

Glueballs propagators in the superfluid phase, away from the critical point, can be fitted by
a conventional cosh(mt) behaviour. This, together with the observation that the Polyakov loop
apparently is not sensitive to this transition [6] confirms that the superfluid phase is confining
[4, 14]. This should be contrasted with observations at finite density, and a nonzero temperatures
where the transition is indeed deconfining[17, 2, 3]

A direct comparison of the propagators in the two phases shows that the lowest mode in the
0++ channel is much lighter in the superfluid phase than in the normal phase. This confirms and
extends our previous results on the meson and glueball level ordering [5].

In the critical region the glueball propagators are dominated by a complex pole. This might
indicate some structure in the 4d space-time possibly amplified by lattice artifacts. A study of the
Nt scaling, closer to the continuum limit, should set this issue.
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