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The order of the phase transition in finite-temperature QCD with two degenerate light quarks is

still an open problem and corresponds to the last question mark in the zero-density phase diagram

of QCD. We argue that establishing the nature of the transition in this case is also a crucial

test for numerical simulations of lattice QCD, allowing precise estimates of possible systematic

errors related e.g. to the choice of fermion-simulation algorithm or of discretized formulation for

fermions.
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Universality and Scaling at the two-flavor-QCD transition

1. Introduction

The phase diagram at zero baryon density and varying quark masses has been intensively
investigated by lattice simulations [1]. The case of two dynamic quarks, i.e. considering dynamic
effects of only two degenerate light-quark flavors, corresponding to the up and down quarks, is
particularly interesting. In this case, if the transition is of second order, one would expect to
observe universal critical scaling in the class of the 3d O(4) continuous-spin model [2]. Also,
in the continuum limit, simulations using different discretizations for the fermion fields should
give the same results. The fact that the critical behavior should be in the universality class of
a spin model can be precisely checked, since the nonperturbative behavior for these models can
be obtained with Monte Carlo simulations by so-calledglobal methods, which avoid the critical
slowing-down present in QCD simulations.

The determination of the correct nature of the transition inthe two-flavor case is one of the
present challenges of lattice QCD. In fact, it corresponds to the last question mark in the zero-
density phase diagram (see e.g. [1]). This prediction has been investigated numerically by lattice
simulations for almost twenty years, yet there is still no agreement about the order of the transition
or about its scaling properties. More precisely, the predicted O(4) scaling has been observed in
the Wilson-fermion case [4], but not in the staggered-fermion case, believed to be the appropriate
formulation for studies of the chiral region. In this case, extensive numerical studies and scaling
tests have been done in the past by the Bielefeld [5], JLQCD [6] and MILC [7] groups. It was
found that the chiral-susceptibility peaks scale reasonably well with the predicted exponents, but
no agreement is seen in a comparison with theO(4) scaling function. At the same time, some
recent numerical studies with staggered fermions claim that the deconfining transition may be of
first order [8, 9]. On the other hand, studies of the two-flavorcase in the massless limit point
towards a second-order transition in theO(2) universality class [10]. In summary, the issue of the
nature of the QCD transition for the two-flavor zero-densitycase is still an open problem, just as it
was ten years ago [11].

Although scaling is not observed, a simple method may be used[12, 13] in order to obtain
a uniquely defined normalization of the QCD data, allowing anunambiguous comparison to the
(normalized)O(4) scaling function. This analysis shows a surprisingly better agreement for the
larger values of the quark masses. Let us note that in previous scaling tests the comparison had
been done up to a (non-universal) normalization of the data and a match to the scaling function
was tried by fitting it to the data points with the smallest masses. One interpretation of this result
is that data at smaller masses (closer to the physical values) suffer more strongly from systematic
errors in the simulations. In fact, larger quark masses are much easier to simulate, allowing greater
control over errors and more reliable results. Here we present a study at a rather large value for the
light quark massmq (we takemq = 0.075 in lattice units), using staggered fermions and the MILC
code. We consider the standard (i.e., unimproved) action and temporal lattice extentNτ = 4, as in
most of the studies mentioned above. Also, we use the so-called R algorithm, but consider very
small integration steps (of aboutmq/10).
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2. Scaling tests

The behavior of systems around a second-order phase transition (or critical point) may show
striking similarities for systems that would otherwise seem completely different. In fact, it is pos-
sible to divide systems into so-called universality classes, in such a way that each class will have,
e.g., the same critical exponents around the transition. The critical point corresponds to external
magnetic fieldH equal to zero, and temperatureT given by its critical valueTc. Typical exponents
are

Mh=0,t→0− → |t|β , (2.1)

χh=0,t→0 → |t|−γ , (2.2)

Mt=0,h→0 → h1/δ , (2.3)

whereM is the order parameter — e.g. the magnetization for a spin system —χ is the correspond-
ing susceptibility andt = (T −Tc)/T0, h = H/H0 are the reduced temperature and magnetic field,
respectively. (T0 andH0 are normalization constants.)

Thus, in principle, one may compare the critical exponents for different systems to check if
they belong to the same universality class. In practice, however, the critical exponents may vary
little from one class to the other and in order to carry out thecomparison one would need to have a
very precise determination of the exponents, which is not yet feasible in the QCD case.

A more general comparison is obtained through thescaling functionsfor both systems. This
comparison allows a more conclusive test, and can be appliedfor cases where the critical exponents
cannot be established with great accuracy. In this case we may assume the exponents for a given
class and compare the behavior of the whole critical region for one system to the known scaling
curve for the proposed universality class. The scaling Ansatz is written for the free energyFs in the
critical region as

Fs(t,h) = b−d Fs(b
yt t,byh h) , (2.4)

whereb is a rescaling factor,d is the dimension andyt ,yh are related to the usual critical exponents:
β , γ , δ mentioned above. Correspondingly, the order parameter must be described by a universal
function

M/h1/δ = fM(t/h1/βδ ) . (2.5)

The statement that the functionfM is universalmeans that once the non-universal normalization
constantsT0 andH0 are determined for a given system in the universality class,the order parameter
M scales according to thesamescaling functionfM for all systems in this class. As said above,
the comparison of (normalized) scaling functions between two systems is a more general test of
universality, especially in the case of the QCD phase transition.

A further difficulty in studying the critical behavior at theQCD phase transition is the impos-
sibility of considering the critical point directly, sincethat would correspond to having zero quark
mass, or zero magnetic fieldH in the language of the spin models above. In order to check scaling
with critical exponents of a given class, or to determine thenormalization constantsT0 andH0 for
systems where a study atH = 0 is not possible, it is important to determine thepseudo-critical
line, defined by the points where the susceptibilityχ shows a (finite) peak. This corresponds to the
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rounding of the divergence that would be observed forH = 0, T = Tc. The susceptibility scales as

χ = ∂M/∂H = (1/H0)h1/δ−1 fχ(t/h1/β ) , (2.6)

where fχ is a universal function related tofM. At each fixedh the peak inχ is given by

tp = zp h1/βδ , (2.7)

Mp = h1/δ fM(zp), (2.8)

H0 χp = h1/δ−1 fχ(zp) . (2.9)

Thus, the behavior along the pseudo-critical line is determined by the universal constantszp,
fM(zp), fχ(zp). Critical exponents, the scaling functionfM and the universal constants above are
well-known for the 3d O(4) model [14, 15, 16].

Note that one may also consider the comparison for finite-size-scaling functions, since they
are also universal and have the advantage of being valid for finite values ofL, the linear size of the
system. Such functions can be determined numerically [15] for the 3d O(4) model.

3. Comparison of QCD data with the predicted scaling function

We now turn to the comparison of the two-flavor QCD data in the critical region (in the case
of small but nonzero quark mass) to the predicted scaling properties of the 3d O(4) spin model.
As mentioned in the Introduction, we consider the chiral phase transition, since there is no clear
order parameter for the deconfinement transition in the caseof full QCD. The order parameter for
the chiral transition is given by the so-called chiral condensate< ψ ψ >, whereψ is a combination
of the quark fields entering the QCD Lagrangian. The analogueof the magnetic field is the quark
massmq, and (on the lattice) the reduced temperature is proportional to 6/g2−6/g2

c(0) , whereg
is the lattice bare coupling andg2

c(0) is its extrapolated critical value. Therefore, referring to the
pseudo-critical line described in the previous section, the chiral susceptibility peaks at

tp ∼ mq
1/βδ . (3.1)

As mentioned in the Introduction, previous results from lattice-QCD simulations in the two-
flavor case show good scaling (with the predicted exponents)only along the pseudo-critical line,
which is given by the peaks of the chiral susceptibility. It should be clear from the discussion in the
above sections that this is not a sufficient test to prove thatthe transition is second order, especially
if no agreement is seen when comparing the data to the scalingfunction. We use [13] the observed
scaling along the pseudo-critical line and the universal quantitieszp, fM(zp) from theO(4) model
to determine the normalization constantsH0, T0 for the QCD data. This allows an unambiguous
comparison of the data to the scaling functionfM. More precisely, we note that in previous analyses
the normalization constants were tentatively adjusted by shifting theO(4) curve so as to get a rough
agreement with the data at smaller quark masses, since theseare closer to the chiral limit. The
problem is that the lighter masses are also more subject to the presence of systematic errors in the
simulations. In this case the overall agreement was rather poor, indicating that there were strong
systematic effets or that the transition is not in the predicted universality class. Here we fix the

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
0
8

Universality and Scaling at the two-flavor-QCD transition

constants as described in Section 2, following the behavioralong the pseudo-critical line. In this
way no value of the quark mass is priviledged and the comparison is unambiguous.

Our comparison [13] is shown in Fig. 1 below. We note that the integration step for the data
at the largest mass is considerably smaller than the usual values. (Our runs were done with 7000
trajectories and 125 steps of length 0.008 per trajectory.)The pseudo-critical line corresponds to a
single point in this plot and is marked with an arrow. For clarity we do not show the data — from
the Bielefeld and JLQCD collaborations — obtained directlyat the pseudo-critical point. These
are slightly scattered aroundzp but show good scaling within errors.

 1

 1

M
/h

1/
δ

t/h1/βδ

"m=0.008-MILC"
"m=0.0125-MILC"
"m=0.025-MILC"

"m=0.075"
"f_M"

Figure 1: Comparison of QCD (staggered) data to theO(4) scaling function [13]. For clarity, we do not
show the data around the pseudo-critical point (indicated by the arrow), which were used to determine the
normalization of the remaining data points.

We see relatively good scaling in the pseudo-critical region, i.e. around [zp, fM(zp)], as ex-
pected. Away from this region most MILC points are several standard deviations away from the
predicted curve. These data are given for three values of thequark mass in lattice units: 0.008,
0.0125 and 0.025. Note that the points with larger mass come closer to the curve. In particular, we
can see that the new data atmq = 0.075 show sensibly better scaling, especially for larger temper-
atures, where previously the scaling seemed unlikely. The good agreement of these data with the
O(4) scaling function motivates a careful study of systematic errors for smaller masses. A possible
source of such errors are finite-size corrections, which would be stronger for smaller masses, since
then the lattice side may not be large enough to “contain” thephysical particle. Put differently,
finite-size effects are expected when the correlation length (in lattice units) associated with a par-
ticle is comparable to or larger than the lattice side. Of course, this is more likely to occur for a
lighter particle.

We note that a finite-size-scaling analysis may also be carried out using universal functions
from theO(4) case (see [13] and references thereof), but one finds that theQCD data show good
(finite-size) scaling only along the pseudo-critical line.Moreover, with the temperature and mass
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parameters considered, the QCD data lie within the asymptotic region, where infinite-volume be-
havior should already be seen. In any case, the finite-size scaling away from the pseudo-critical
region is also significantly better for the larger quark masses.

4. Conclusions

Determining the nature of the chiral phase transition in two-flavor QCD still stands as a chal-
lenge. Despite great computational effort, the predictionof a second-order transition with critical
behavior in the universality class of theO(4) spin model is not verified for staggered fermions of
small masses, although it can be shown (by an unambiguous normalization of the data) that better
scaling is obtained for the existing data at larger (unphysical) masses. Let us also mention that a
redefinition of the reduced temperature in terms of the physical temperatureT including [8] a term
in the quark massmq, improves the agreement with the scaling curve further [12].

The fact that data for heavier quarks would show such good scaling may be surprising, since
the normalization of the data for comparison with the scaling curve did not priviledge any particu-
lar values of the quark mass. Indeed, one would expect to observe agreement with theO(4) scaling
curve for the smaller masses, which are closer to the chiral limit, where universality is predicted
to hold. This suggests that the lack of scaling at small masses observed so far may be caused by
systematic effects. A common source of systematic errors inlattice simulations are discretization
effects, which might be related here to the small number of points along the temporal direction
(Nτ = 4) or to the use of the unimproved fermion action. The use of the staggered fermion formu-
lation has also been generally criticized recently [17]. Other sources of errors could be finite-size
corrections and uncontrolled errors in the hybrid Monte Carlo algorithm (the R algorithm, in our
case) used for updating the configurations. Both these sources of errors would be more significant
for the case of smaller masses.

We note that, as mentioned above, the deviations fromO(4) scaling at smaller masses are most
likely not due to finite-size corrections. On the other hand, it must be stressed that the R algorithm
used to update the configurations is not exact and should haveits accuracy tested carefully for each
different value of the quark mass used, comparing when possible to simulations using the exact
RHMC algorithm. Indeed, recent studies try to establish to what extent the use of the R algorithm
may have influenced currently accepted results from lattice-QCD simulations. One study of this
type considers possible systematic effects on results for the finite-temperature phase transition in
the case of a realistic mass spectrum [18]. (Note that the transition in this case is not of second
order.) It is generally believed that such systematic errors are negligible, or of the order of the
statistical uncertainties in the simulations [9], but a detailed comparison must be made. We are
currently extending our study using the RHMC algorithm.

As discussed here, the phase transition for two degenerate quark flavors is clearly especially
well-suited for studying the effects of systematic errors in lattice simulations, since very large sys-
tematic effects would not be unexpected around a second-order phase transition. In fact, this case
may be a more stringent test of the several possible systematic errors, such as discretization effects,
errors associated with the updating algorithm or with the choice of the fermion discretization used
in the simulations.
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