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Universality and Scaling at the two-flavor-QCD transition

1. Introduction

The phase diagram at zero baryon density and varying quadsaaahas been intensively
investigated by lattice simulations [1]. The case of twoawic quarks, i.e. considering dynamic
effects of only two degenerate light-quark flavors, coroesfing to the up and down quarks, is
particularly interesting. In this case, if the transitigaf second order, one would expect to
observe universal critical scaling in the class of tlie@Q(4) continuous-spin model [2]. Also,
in the continuum limit, simulations using different disttzations for the fermion fields should
give the same results. The fact that the critical behavioukhbe in the universality class of
a spin model can be precisely checked, since the nonpetitigrlisehavior for these models can
be obtained with Monte Carlo simulations by so-caltgdbal methods, which avoid the critical
slowing-down present in QCD simulations.

The determination of the correct nature of the transitiothm two-flavor case is one of the
present challenges of lattice QCD. In fact, it correspordthé last question mark in the zero-
density phase diagram (see e.g. [1]). This prediction has bevestigated numerically by lattice
simulations for almost twenty years, yet there is still noeggnent about the order of the transition
or about its scaling properties. More precisely, the ptedi©(4) scaling has been observed in
the Wilson-fermion case [4], but not in the staggered-femtdase, believed to be the appropriate
formulation for studies of the chiral region. In this caseteasive numerical studies and scaling
tests have been done in the past by the Bielefeld [5], JLQGR®HE MILC [7] groups. It was
found that the chiral-susceptibility peaks scale reasignabll with the predicted exponents, but
no agreement is seen in a comparison with @{d) scaling function. At the same time, some
recent numerical studies with staggered fermions clairhttfedeconfining transition may be of
first order [8, 9]. On the other hand, studies of the two-flavase in the massless limit point
towards a second-order transition in B€2) universality class [10]. In summary, the issue of the
nature of the QCD transition for the two-flavor zero-densiige is still an open problem, just as it
was ten years ago [11].

Although scaling is not observed, a simple method may be [f&d13] in order to obtain
a uniquely defined normalization of the QCD data, allowinguaambiguous comparison to the
(normalized)O(4) scaling function. This analysis shows a surprisingly bettgreement for the
larger values of the quark masses. Let us note that in previousngctdsts the comparison had
been done up to a (non-universal) normalization of the datheamatch to the scaling function
was tried by fitting it to the data points with the smallest sess One interpretation of this result
is that data at smaller masses (closer to the physical Jaduéfer more strongly from systematic
errors in the simulations. In fact, larger quark masses arghreasier to simulate, allowing greater
control over errors and more reliable results. Here we ptesstudy at a rather large value for the
light quark massn, (we takemg = 0.075 in lattice units), using staggered fermions and the MILC
code. We consider the standard (i.e., unimproved) actidnemporal lattice exteril; = 4, as in
most of the studies mentioned above. Also, we use the seecRllalgorithm, but consider very
small integration steps (of abonr;/10).
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2. Scaling tests

The behavior of systems around a second-order phase iman@it critical point) may show
striking similarities for systems that would otherwisersemompletely different. In fact, it is pos-
sible to divide systems into so-called universality clasge such a way that each class will have,
e.g., the same critical exponents around the transitiore CFiical point corresponds to external
magnetic fieldH equal to zero, and temperatuFegiven by its critical valudl.. Typical exponents
are

Mh=ot_o- — [t|°, (2.1)
Xn=0t—0 — [t|7Y, (2.2)
Mi—o.n-0 — h'/?, (2.3)

whereM is the order parameter — e.g. the magnetization for a spiesys— x is the correspond-
ing susceptibility and = (T — T¢)/To, h = H/Hg are the reduced temperature and magnetic field,
respectively. To andHg are normalization constants.)

Thus, in principle, one may compare the critical exponeotdifferent systems to check if
they belong to the same universality class. In practice,dvew the critical exponents may vary
little from one class to the other and in order to carry outdtsmparison one would need to have a
very precise determination of the exponents, which is nbfaasible in the QCD case.

A more general comparison is obtained throughgbaling functiongor both systems. This
comparison allows a more conclusive test, and can be agdplie@dses where the critical exponents
cannot be established with great accuracy. In this case weasgime the exponents for a given
class and compare the behavior of the whole critical regmwrohe system to the known scaling
curve for the proposed universality class. The scaling Bmisavritten for the free energdys in the
critical region as

Fs(t,h) = b 9Fg(b"t, b h), (2.4)

whereb is a rescaling factod is the dimension ang, y, are related to the usual critical exponents:
B, vy, 8 mentioned above. Correspondingly, the order parametet Ipeudescribed by a universal
function

M /hY% = fy, (t/ht/Bo) . (2.5)

The statement that the functidiy is universalmeans that once the non-universal normalization
constantspy andHg are determined for a given system in the universality cliesporder parameter
M scales according to theamescaling functionfy, for all systems in this class. As said above,
the comparison of (normalized) scaling functions between gystems is a more general test of
universality, especially in the case of the QCD phase ttiansi

A further difficulty in studying the critical behavior at tligCD phase transition is the impos-
sibility of considering the critical point directly, sin¢kat would correspond to having zero quark
mass, or zero magnetic fieldl in the language of the spin models above. In order to chedkgca
with critical exponents of a given class, or to determinertbemalization constant® andHg for
systems where a study Ht= 0 is not possible, it is important to determine {hgsudo-critical
line, defined by the points where the susceptibijtghows a (finite) peak. This corresponds to the
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rounding of the divergence that would be observedHct 0, T = T.. The susceptibility scales as
X = OM/0H = (1/Ho)h"/> fy (t/n"/P) | (2.6)

wherefy is a universal function related ty. At each fixedh the peak iny is given by

tp = z,h¥/P?, (2.7)
Mp = ht/% fu(zp), (2.8)
Hoxp = hY° 1 ,(zp). (2.9)

Thus, the behavior along the pseudo-critical line is deteeoh by the universal constang,
fm(zp), fy(zp). Critical exponents, the scaling functidfy and the universal constants above are
well-known for the 8 O(4) model [14, 15, 16].

Note that one may also consider the comparison for finite-sgaling functions, since they
are also universal and have the advantage of being validrite fralues oL, the linear size of the
system. Such functions can be determined numerically [d5Shie 31 O(4) model.

3. Comparison of QCD data with the predicted scaling function

We now turn to the comparison of the two-flavor QCD data in ttigcal region (in the case
of small but nonzero quark mass) to the predicted scalingepties of the 8 O(4) spin model.
As mentioned in the Introduction, we consider the chiralgghtransition, since there is no clear
order parameter for the deconfinement transition in the cbidl QCD. The order parameter for
the chiral transition is given by the so-called chiral camsle< P () >, wherey is a combination
of the quark fields entering the QCD Lagrangian. The analajulee magnetic field is the quark
massiny, and (on the lattice) the reduced temperature is propatitm6/g® — 6/92(0), whereg
is the lattice bare coupling argf(0) is its extrapolated critical value. Therefore, referringthe
pseudo-critical line described in the previous sectioa,dhiral susceptibility peaks at

tp ~ mgY/P2. (3.1)

As mentioned in the Introduction, previous results fronidatQCD simulations in the two-
flavor case show good scaling (with the predicted exponamiy)along the pseudo-critical line,
which is given by the peaks of the chiral susceptibility.Hbald be clear from the discussion in the
above sections that this is not a sufficient test to provettieatransition is second order, especially
if no agreement is seen when comparing the data to the sdatietion. We use [13] the observed
scaling along the pseudo-critical line and the universaintjtiesz,, fu(z,) from theO(4) model
to determine the normalization constahis Tp for the QCD data. This allows an unambiguous
comparison of the data to the scaling functiign More precisely, we note that in previous analyses
the normalization constants were tentatively adjustechiftirsg theO(4) curve so as to get a rough
agreement with the data at smaller quark masses, since dhessoser to the chiral limit. The
problem is that the lighter masses are also more subjecetprisence of systematic errors in the
simulations. In this case the overall agreement was rather, indicating that there were strong
systematic effets or that the transition is not in the prediainiversality class. Here we fix the
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constants as described in Section 2, following the behalimmg the pseudo-critical line. In this
way no value of the quark mass is priviledged and the compaigsunambiguous.

Our comparison [13] is shown in Fig. 1 below. We note that tiiegration step for the data
at the largest mass is considerably smaller than the ushads/a(Our runs were done with 7000
trajectories and 125 steps of length 0.008 per trajectditye pseudo-critical line corresponds to a
single point in this plot and is marked with an arrow. Forityawe do not show the data — from
the Bielefeld and JLQCD collaborations — obtained direetiythe pseudo-critical point. These
are slightly scattered arourzg but show good scaling within errors.

"m=0.008-MILC" —H5&—
"m=0.0125-MILC" —o&—
1k "m=0.025-MILC" —<— -

L e ==} "m=0.075" —e— |
b RV

M /h1/6

t/hl/B()

Figure 1: Comparison of QCD (staggered) data to @) scaling function [13]. For clarity, we do not
show the data around the pseudo-critical point (indicatethb arrow), which were used to determine the
normalization of the remaining data points.

We see relatively good scaling in the pseudo-critical negice. around 4y, fu(zp)], as ex-
pected. Away from this region most MILC points are severahdard deviations away from the
predicted curve. These data are given for three values afjubek mass in lattice units: 0.008,
0.0125 and 0.025. Note that the points with larger mass cdosercto the curve. In particular, we
can see that the new datanaj = 0.075 show sensibly better scaling, especially for largerpiem
atures, where previously the scaling seemed unlikely. Toel gagreement of these data with the
O(4) scaling function motivates a careful study of systematiorsrfor smaller masses. A possible
source of such errors are finite-size corrections, whichldvba stronger for smaller masses, since
then the lattice side may not be large enough to “contain”pifngsical particle. Put differently,
finite-size effects are expected when the correlation ke(igtlattice units) associated with a par-
ticle is comparable to or larger than the lattice side. Ofrseuthis is more likely to occur for a
lighter particle.

We note that a finite-size-scaling analysis may also beethwut using universal functions
from theO(4) case (see [13] and references thereof), but one finds th@@i2 data show good
(finite-size) scaling only along the pseudo-critical liloreover, with the temperature and mass
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parameters considered, the QCD data lie within the asymptgion, where infinite-volume be-
havior should already be seen. In any case, the finite-saengcaway from the pseudo-critical
region is also significantly better for the larger quark neass

4. Conclusions

Determining the nature of the chiral phase transition in-fleeor QCD still stands as a chal-
lenge. Despite great computational effort, the predictba second-order transition with critical
behavior in the universality class of tl&4) spin model is not verified for staggered fermions of
small masses, although it can be shown (by an unambiguousafination of the data) that better
scaling is obtained for the existing data at larger (unglafsimasses. Let us also mention that a
redefinition of the reduced temperature in terms of the glaysemperaturd@ including [8] a term
in the quark massy, improves the agreement with the scaling curve further.[12]

The fact that data for heavier quarks would show such goodéhgoaay be surprising, since
the normalization of the data for comparison with the scatinrve did not priviledge any particu-
lar values of the quark mass. Indeed, one would expect tawvbagreement with th@(4) scaling
curve for the smaller masses, which are closer to the chiméd, where universality is predicted
to hold. This suggests that the lack of scaling at small nzasbserved so far may be caused by
systematic effects. A common source of systematic errolatiice simulations are discretization
effects, which might be related here to the small humber aftpalong the temporal direction
(N; = 4) or to the use of the unimproved fermion action. The use @ktaggered fermion formu-
lation has also been generally criticized recently [17]hétsources of errors could be finite-size
corrections and uncontrolled errors in the hybrid Montel&€afgorithm (the R algorithm, in our
case) used for updating the configurations. Both these ssuifcerrors would be more significant
for the case of smaller masses.

We note that, as mentioned above, the deviations f2g4) scaling at smaller masses are most
likely notdue to finite-size corrections. On the other hand, it musttessed that the R algorithm
used to update the configurations is not exact and shoulditseavecuracy tested carefully for each
different value of the quark mass used, comparing when lplesg simulations using the exact
RHMC algorithm. Indeed, recent studies try to establish bhawextent the use of the R algorithm
may have influenced currently accepted results from la@€® simulations. One study of this
type considers possible systematic effects on resultshfofihite-temperature phase transition in
the case of a realistic mass spectrum [18]. (Note that thmsitian in this case is not of second
order.) It is generally believed that such systematic sreye negligible, or of the order of the
statistical uncertainties in the simulations [9], but aailed comparison must be made. We are
currently extending our study using the RHMC algorithm.

As discussed here, the phase transition for two degeneuvatd flavors is clearly especially
well-suited for studying the effects of systematic errorfattice simulations, since very large sys-
tematic effects would not be unexpected around a secoret-ptthse transition. In fact, this case
may be a more stringent test of the several possible systeenadrs, such as discretization effects,
errors associated with the updating algorithm or with theied of the fermion discretization used
in the simulations.



Universality and Scaling at the two-flavor-QCD transition

5. Acknowledgements

This work was partially supported by FAPESP and CNPq.

References

[1] U. M. Heller, Recent progress in finite temperature lattice Q@DSL AT 2006, (2006) 011,
arXiv:hep-lat/0610114.

[2] Remarks On The Chiral Phase Transition In Chromodynapic®isarski, and F. Wilczelehys. Rev.
D29 (1984) 338.

[3] F. Wilczek,Opportunities, challenges, and fantasies in lattice Q@IDcl. Phys. Proc. Suppl19
(2003) 3.

[4] S. Ejiri, Lattice QCD thermodynamics with Wilson quarasXiv:hep-lat/0704.3747.

[5] F. Karsch, and E. Laerman8usceptibilities, the specific heat and a cumulant in twaflQCD,
Phys. RevD50 (1994) 6954.

[6] S. Aokietal. (JLQCD Collaborationgcaling study of the two-flavor chiral phase transition vitik
Kogut-Susskind quark action in lattice QCBhys. RevD57 (1998) 3910.

[7] C. Bernard et al. (MILC Collaborationgritical behavior in N(t) = 4 staggered fermion
thermodynamicd?hys. RevD61 (2000) 054503.

[8] M. D’Elia, A. Di Giacomo and C. Picalwo flavor QCD and confinemefithys. RevD72 (2005)
114510.

[9] G. Cossu, M. D’Elia, A. Di Giacomo and C. Picawo flavor QCD and confinement ; I
arXiv:hep-lat/0706.4470.

[10] J. B. Kogut and D. K. Sinclaividence for O(2) universality at the finite temperaturens#ion for
lattice QCD with 2 flavours of massless staggered qudrkys. RevD73 (2006) 074512.

[11] E. LaermannChiral transition in 2 flavor staggered QCIMNucl. Phys. Proc. SuppOA (1998) 180.

[12] T. MendesSearch for universal scaling at the chiral phase transitior2-flavor lattice QCD AIP
Conf. Proc.756 (2005) 413.

[13] T. Mendeslattice results for the QCD phase transitiddraz. J. Phys37 (2007) 597,
arXiv:hep-lat/0609035.

[14] J. Engels, and T. MendeGpldstone-mode effects and scaling function for the tiiegensional O(4)
mode] Nucl. PhysB572 (2000) 289.

[15] J. Engels, S. Holtmann, T. Mendes, and T. Schilfigte-size-scaling functions for 3d O(4) and O(2)
spin models and QCPhys. LettB514 (2001) 299.

[16] A. Cucchieriand T. Mendeg&quation of state for spin systems with Goldstone bosons:3tH0(4)
case J. Phys A38 (2005) 4561.

[17] S. R. SharpeRooted staggered fermions: Good, bad or ugR&SL AT 2006 (2006) 022,
arXiv:hep-lat/0610094.

[18] M. Chenget al,, Study of the finite temperature transition in 3-flavor QCDngsihe R and RHMC
algorithms Phys. RevD75 (2007) 034506.



