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1. Background

The deconfining phase transition of SU(NN & 3) gauge theories in 3 1 dimensions is
characterized by a low-temperature confined phase, vi@g¢symmetry is unbroken and quarks
and gluons are bound, and a high-temperature deconfineé pleseZ(N) symmetry is sponta-
neously broken and quarks and gluons are free [1]. Simulatid pure gauge theories indicate that
the transition between the confined and deconfined phasestiseriler for allN > 3. The global
Z(N) symmetry appears to always break completely in the decahfimase, with no residual
unbroken subgroup.

The confined phase of pure gauge theories is in a region ofdawpérature that cannot be
accessed perturbatively. It is therefore useful to geizeréihe system to restore the confined phase
in a region of high temperatures. We were motivated in parDhyieset al. who generalized
the mechanism of color confinement in a monopole gas to fomewsional supersymmetric gauge
theories onR3 x St [2]. They showed that monopole contributions to the supergal led to
an effective action with &(N) symmetric minimum, corresponding to the confined phase, for
all values of theS' circumference (naively analogous to temperature). Theeef is reasonable
to expect that the addition of a term to the pure gauge thedigrawhich mimics the effects of
monopoles would make the confined phase to accessible At alb this end we extended the
Euclidean action of the pui®J(N) gauge theory with &(N) invariant term, the adjoint Polyakov
loop:

B
- / X TraP(X) = —T / dt / d3xha TraP(). (1.1)
0

HereP(X) is the Polyakov loop at the spatial locatigngiven by the path ordered exponential of
the temporal component of the gauge field.

A heuristic argument suggests that confinement is restdreigita temperatures through vari-
ation ofha. Consider minimization of the effective potential

Veff = ZVRTrRP_ThATrAP- (12)

Because raP =|Trg P\z — 1, positiveha favors maximization ofr raP, which implies|TrgP| > 0.
ThusZ(N) symmetry is broken which suggests this region is in the déwed phase. Negative,
favors minimization off raP, implying Trg P = 0, which defines the confined phase. Therefore for
sufficiently negativehya, the confined phase may be restored above the ndigmal 0 deconfine-
ment temperature. In the weak-coupling regime of high teatpee we can calculate the effective
potential, pressure, string tensions and 't Hooft loopamgftensions and examine their behavior
in the restored confined phase resulting from the variatfdm @see also [3]).

2. SU(3) Simulation Results

Our simulations were performed 8U(3) andSU(4) by adding an adjoint Polyakov loop term
to the standard lattice action:

S=Sy+ Y HaTraP(®) (2.1)
X
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whereSy is the Wilson action. The naive relationship between theate lattice parametdtia,
and the parameter used in our analytical calculatingds Ha = haa®, but there is an additional
unknown multiplicative renormalization factor.

Our simulation results foBU(3) show
Phase Diagram for SUG) L=t that increasing positivels decreases the de-
confinement temperature as expected, and
for sufficiently negativeHa confinement is
restored at high temperature. However, for
negative Hy there is an unexpected new
phase which break&(3) symmetry in a pe-
culiar way.
i Figure 1 shows the phase structure in
] the 3 - Ha parameter space &U(3) defined
ool N S i in terms of (TrgP), where projection to the
| neares¥(3) axis is understood. In the region
of negativehp there are 3 distinct phases: the
deconfined phase wit{TrgP) > 0, the con-
fined phase with TreP) = 0, and the new
"skewed" phase witliTrgP) < 0.

As shown in Figure 1, decreasihty at
fixed B > 6, we encounter first the decon-
fined phase, then the skewed phase, then the confined phaebtaii the locations of the phase
transitions we use the histograms of the fundamental Poly&dop in combination with plots of
the adjoint Polyakov loop susceptibility. Figure 2 shold(3) histograms of the fundamental
Polyakov loop order parameter.
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Figure 1: Phase diagram iBU(3) for an extended
action
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Figure2: SU(3) Polyakov loop histograms

Figure 3 showsTreP) versusHa. The presence of all three phases is clear. Figure 4 shows
the adjoint Polyakov loop susceptibility. The obvious distinuity in the order parameter shows
that the transition between the deconfined and skewed plméest-order in both graphs. The
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Figure 3: ProjectedTreP Figure 4: Adjoint susceptibilityxm

transition between the skewed phase and the confined phaseisweaker. It is likely to be first
order as well, but this is not obvious due to the very smalhgea of the order parameter.

3. SU(3) Theory

To confirm our lattice results we studied the thermodynarofdbe system using an effective

potential adapted from the one-loop free energy densityduauated by Gross, Pisarski, and Yaffe
[4], and by N. Weiss [5]. Our modified expression is

1 d3k
Vorf = —ZETrA/W;In[(wn—AO)Z%—kZ]—hAT TraP (3.1)

where the sum is over Matsubara frequencigs= 2rmT. To locate the phases it is useful to write
this as a function of the eigenvalues of the Polyakov loop:

N 1 m® 1 2 2
Vett =—2T4jZ:1 (1— N5jk> [%_W |86 | (2r1— | A6j])

2 (3.2)
-1

N

3 e

=

—haT

In SU(3), it is sufficient to consideY, ¢+ for the Polyakov loop projected onto the real a¥s+
diag[1,expi@),exy—i@)]. Figure 5 shows that the effective potential finds all 3 phase

4. Comparison of SU(3) theory to simulation

We have calculated the values @fthat minimizeVe¢t in the three phases, then found the
location of the phase transitions in terms of the dimenssiquantityha/T3. The deconfined-
skewed phase transition is locatedhay T3 = —?/48 ~ —0.206. The skewed-confined phase

transition is atha /T3 = —5m°/162~ —0.305. The ratio of these values is similar to that from
simulations.
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Figure5: Phases from calculation &k in SU(3)

L ‘ ‘ ‘ I We also compared values for the pres-
09 e sure determined from the effective potential
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Figure6: Theoretical prediction for the pressure from 1°/6 ~ 1.64 across the deconfined phase,

Vet normalized by the black body value as a function and Ap/T* =0 across the skewed phase.
of ha. In simulationsAp/T# = 1.644 0.03 across

the deconfined phase ang/T4 = —0.18+
0.07 across the skewed phase.

5. SU(4) Simulation

The case 0oBU(4) is somewhat different. In simulations the new phase is gartconfining
instead of skewed. Figure 7 shows tBid(4) histograms of the fundamental Polyakov loop. The
new phase again occurs for negative We first encounter the deconfined phase, then the partially-
confined phase. Tunneling is observed as we continue deuyelds in the partially confined
phase. The fluctuations gradually reduce in size, but we rzertain if there is a transition into
the confined phase.

In the new phase dBU(4), globalZ(4) symmetry breaks spontaneouslyZ(®), a partially-
confined phase. The residu&({2) symmetry ensures thdT r=P) = 0, but that(TrgP) # 0 for
representations that transform trivially und&2), so quarks are confined, but diquarks are not.
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Figure 7: SU(4) Polyakov loop histograms

The Z(2) symmetry of the partially-confined phase is clear from theethistory of variations of
the real and imaginary parts of the Polyakov loop during g lam in which tunneling is observed,
as shown in Figure 8.
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Figure 8: Real and imaginary parts &UJ(4) Polyakov loop versus Monte Carlo time

6. SU(4) Theory

For our analytical calculations BU(4) we use again the one-loop effective potential to exam-
ine the possible occurrence of four different phases: timéined phase with fulZ(4) symmetry,
the deconfined phase, a partially-confirg@)-invariant phase, and a skewed phase similar to that
of SU(3). However, only the deconfined phase and Z{2) phase are predicted by our simple
theoretical model. A more complicated model with additioleaims should reveal the confined
phase [6].

We compared the phase structure predicted by the one-ldegtieé potential with our sim-
ulation. Vet¢ predicts a first-order transition between the deconfinedZ4@¢tinvariant phases at
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ha/T3 = —1?/48 ~ —0.205617. This is in the same region lof as in simulations. Across the
deconfined phase, the theoretical valua¢p/T*) = /3 ~ 3.289. In simulationsh (p/T*) =
2.21+0.07

7. Discussion and Conclusions

We have considerable evidence, from lattice simulation fameh theory, for the existence
of new phases of finite temperature gauge theorieSU(B) and SU(4) when aZ(N)-invariant,
adjoint Polyakov loop term is added to the gauge actiorsU(i3), confinement is restored at high
temperatures, and the skewed phase was found.

It is interesting to note that Wozat al. [7], in their study ofSU(3) spin models, observed
a number of interesting new phases. One of these, which @fey to as the anti-centre phase,
appears similar to our skewed phase. The anticenter phagéetfrom an action of the form:

Stf =ArS +A15Si5 (7.1)

which includes a nearest neighbor coupling term in the 15esgmtation instead of an adjoint
potential term. We believe that these phases are related.

In the general case GU(N), there is good reason to expect a very rich phase structuye ma
exist. For example, i8U(6), we can consider partial breaking £f6) to eitherZ(2) or Z(3). We
have calculated the string tensions and 't Hooft loop serfaasions in the restored confined phase
at high temperature [6]. These predictions can be checkiadtice simulations.
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