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1. Introduction

Numerical simulations based on the lattice QCD are powéofulk to investigate the strongly
coupled quark gluon plasma. Lattice QCD can give non-pleatiwe results in a model independent
way. The phase structure of QCD as well as thermodynamiceptiep have been studied [1]. Most
finite temperature QCD simulations have been performed thiglstaggered fermion. Numerical
costs for the staggered fermion are relatively small, comgbavith other fermion formulations.
Nt = 2+ 1 QCD simulations including dynamical up, down and stranggrks have been carried
out by many collaborations. They showed thiat= 2+ 1 QCD has a crossover at the physical
point [2] and the crossover temperature in the continuunit isnl50— 190[MeV] [1]. A subtle
point of the staggered fermion is the fourth-root trick of ttuark determinant, which makes the
action non-local and complicates the continuum extrafmaf3]. Cross checks with different
fermion formulations are desirable.

In contrast to the case of the staggered fermions, the Wilsomion has a simple structure on
quark flavors. The Wilson fermion does not need the fourti-tick. Pseudo-order parameters
satisfy theO(4) scaling well with the RG improved gauge action [4], whichde#o a reliable chiral
extrapolation. But, simulations using the Wilson fermi@me limited due to their computational
demands. Only one group reported the chiral and continumit \ialue of critical temperature
T, = 166— 173[MeV] [5].

In this work, we study the phase structureNgf= 2 QCD using the clover improved Wilson
fermion combined with the RG improved gauge action. We egnatasotropic lattices with smaller
temporal lattice spacing than the spatial one to reducedligation effects of thermodynamic
guantities and to obtain more data points in the temporattdon. Simulations are performed on
8% x 8, 1C¢° x 10 and 12 x 12 lattices. We determine pseudo-critical points by the/&av loop
susceptibility. The critical temperature in the chiral iliris obtained by chiral extrapolations of
pseudo-critical points usin@(4) scaling function. We also check the existence of bound state
of mesons by measuring their wavefunctions, and obtaindmsmalar and vector meson masses
around the phase transition point.

2. Method

We performed full QCD simulations with two flavors of degeaaterup and down quarks. For
the gauge part, we employ the RG improved action defined by

$=8 {y—t > CoRj(X) +Ca(Rj(X) + Rji(X) + Yo ) CoPa(X) + C1(Ria(x) + R (X))} (21

Xl,) X!
wherei, j runs in spatial directions arfé),, andRy,y are the plaquette and rectangular loop in the
U — Vv plane.co = 3.648 andc; = —0.331 are determined by a renormalization group analysis [6].
They satisfy the normalization conditiar +8c; = 1, andB = 6/g?. s is the bare anisotropy,
which is tuned non-perturbatively so that the ratio of sdathd temporal lattice spacings becomes
two, & = as/a = 2 [7]. For the fermion part, we use the clover quark actionraefiby

S = ) WDxyy (2.2)
X7y
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Table 1: Simulation parameters.

size B K traj
83x8 195-21 01100-0.1275 1000-7000
128 %8 20 0.1170—0.1265 1000-7000

10®x10 20-21 01170-0.1270 1000-4000
12x12 205-21 01170-0.1275 500-6000

Dy = By~ Koy |1 = W)Uxi By + (T + WU 8y
|
— Ki [(1— V)Uxad 5+ (1+ y.)UXT45X,y+;1] —Ks [rcsz Ri(X)aij+c )y Fa(x)oia |(2.3)
] I

whereks is the hopping parameter in the spatial direction ang the one in the temporal direc-
tion. Fyy is the clover-shaped lattice discretization of the fielersgth andoy,y = (i/2)[yu, Wl
For the clover coefficients, we adopt a meanfield improvedeval = 1/u, ¢ = 1/usl? with
us = (1— 1.154/B)Y* u = 1. We set the spatial Wilson parametet= 1/&. As in the gauge
sector, the bare anisotropy = ﬁ is tuned to satisf¢ = 2 using the dispersion relation [7]. For
convenience, we define.

—2(y +3r—4). (2.4)

Numerical simulations are performedft=1.9—2.1 on & x 8, 1 x 10 and 12 x 12 lat-
tices using the Hybrid Monte Carlo algorithm. The hoppingapaeters are chosen gs= 0.1100—
0.12750, which cover the pi-rho ratioges/my = 0.75— 0.60 at zero temperature. The Polyakov
loops are measured at each trajectory and hadron massegasared at each 5 trajectories. Sta-
tistical errors are estimated by the jackknife method witts lof 100 trajectories. Our simulation
parameters are summarized in Table 1.

3. Critical temperature

We determine the pseudo-critical temperature from the peedtion of the Polyakov loop
susceptibility, which is an order parameter in the heavyrkjumass limit. Two-flavor QCD is
expected to have the second order phase transition at ttad kitmit of zero quark masses. How-
ever, the phase transition is smeared out as quark masseasacand it becomes crossover. Since
crossover does not have any order parameters, we idergifysttudo-phase transition points where
fluctuations grow. The Polyakov lodpis built of temporal link variables.

L=Tr [Ua(x.). (3.1)
t

We perform Z(3) rotation to limit the phase bfto a range {11/3,+1/3]. The Polyakov loop
susceptibility, in a spatial volumé#/ is defined ag, EV(<L2> - <L>2). Fig. 1 illustrates typical
k dependence of the Polyakov loop values and susceptiililibe peak location g, is obtained
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Figure1: k dependence of the Polyakov loop (left panel) and its suszktyt(right panel) at@ = 2.00 on
82 x 8 lattice. The peak location ¢f. is obtained by Gaussian fits to the data around it.

by Gaussian fits to the data around it, which we consider aswidpsphase transition point on the
lattice.

We checked the finite size effects for the pseudo-criticalperature. In a finite size box,
singularities associated with phase transitions becont@ nii is hecessary to check magnitude
of finite size effects. We performed runs of»88 and 12 x 8 lattices and found that the peak
locations ofx, agree within Zr. We don'’t find any clear sign of finite size dependence. It is
consistent thal; = 2 finite temperature QCD has crossover at our simulationtpduat, more
systematic study of finite size scaling is needed to confirm it

We employO(4) scaling function for chiral extrapolations of pseudo-gh&ansition points.
O(4) scaling is expected from the universality at the chiraltif8]. O(4) scaling function is

ch _ BCI + B(mgWI)l/Bé (32)

where the critical exponent is obtained ©y4) spin model, Y35 = 0.537(7) [9]. We adopt the
vector Ward identity quark masey"' = (1/kpc —1/kc)/2 as an external field3,c andk . are 3
andk at the pseudo-phase transition poifit. andB are free parameters. We fit our lattice data to
this O(4) scaling function. As in the case on isotropic lattio®$4) scaling is satisfied well for data
on anisotropic lattices with the RG gauge and clover fernaiciion combination. The situation is
illustrated in Fig. 2. Oncéy is obtained from the chiral extrapolation, we can convett ithe

critical temperaturd.
1

"= Nale) ¢9
where the temporal lattice scadg3) is set by the rho meson mass at the zero temperature. Fig. 2
plots temporal size dependenceTgf Our preliminary data predicfg ~ 160 MeV in the contin-
uum limit. Our value fofT; is slightly smaller than those estimated on isotropicdatti Anisotropic

lattices may remove discretization errorsipin a more efficient way than isotropic lattices.

4. Spectroscopy

We examined temperature dependences of light hadron magseswe checked that hadrons
keep to be bound states, light hadron spectroscopies dmmped around the pseudo-critical tem-
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Figure 2: Chiral extrapolation of the pseudo-critical points (lefinel) and continuum extrapolation of the
critical temperature (right panel). For comparison, catitemperatures on isotropic lattices also plotted [4,
5].

perature and zero temperature. On conventional isotragiices, it is hard to extract masses from
temporal correlators, because the temporal length isdahiily the temperature. Anisotropic lattices
have an advantage in calculating masses, due to finer resointthe temporal direction.

First, we observed a meson wavefunction around the psatititaicpoint to investigate hadrons
are bound states or not. If hadrons are bound states, thesfuvections must be spatially localized.
If not, the wavefunctions are wide spread in space. A mesaefiactiong(r) is constructed of a
quark fieldg(x,t) as follow.

Y (@xHrax-+r.H@x.nrax.t)’)

A0S e oraw o)y | RS 4D

X

wheret = N; /2 is employed and three polarizations are averaged for ameeson. Wavefunctions
of pseudoscalar and vector mesons at zero and finite terapesatre shown in Fig. 3. As in the
case of zero temperature, the wavefunctions are expofigtbiealized in space. Our results imply
that mesons are bounded even near the pseudo-phase drapsitit.

Then, we calculated meson spectrum. Since we are interiested temperature dependence
of the ground state energy, we enhance the ground statd siging the wavefunction. Meson
operatordVi(x,t) are smeared by wavefunctions.

M(x,t) =% @ (Ne(r)ax+r.Hrax+r't). (4.2)
r,r

Point operator is realized by setting (r) = & 0. We can extract meson masses from correla-
tion functions. G(t) = 3, (M(x,t)M'(0,0)). Fig. 4 is an example of effective masses; " =
Iog%. Smearing meson operators allow us to extract their mass@sdmallt region. Corre-
lation functions in the plateau of their effective massesfited with cosh to obtain masses.

After computing meson masses at finite temperature, we cantipam with those at zero tem-
perature. The ratios of finite and zero temperature massqdatted in Fig. 5. Out data of vector

meson masses dj = 8 does not show any clear dependence toward zero mass. Hadiotd the
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Figure 3. Pseudoscalar(left panel) and vector meson wavefunctighspanel) at zero and finite tempera-
tures.
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Figure4: Pseudoscalar(left panel) and vector meson effective ra@gget panel) at finite temperatures.

prediction of the vector manifestation scenario that vesteson masses approach to zero in the
chiral limit of zero quark masses at the critical tempem{0]. One of possibilities that conceals
the decrease of vector meson masses toward the chiral $iraitattice artifact associated with a
finite lattice spacing.O(a) may modify the chiral behavior. To clarify this point, calations at
finer lattice spacings are needed. Computationskea 10 and 12 lattices are ongoing.

5. Conclusions

We investigated the phase structurd\zf= 2 QCD using the RG-improved gauge action and
the clover-improved Wilson quark action dn= 2 anisotropic lattices. We determined pseudo-
critical points at finite quark masses by the Polyakov loogceptibilities. The pseudo-critical
points are found to be consistent wi(4) scaling. The critical temperature in the chiral limit
is obtained using(4) scaling function. Our value of the critical temperaturelis~ 160 MeV,
which is slightly lower than those obtained on isotropiditats. Anisotropic lattices may reduce
discretization errors of efficiently. For more precise determination Tf continuum extrapo-
lation and finite size scaling are needed. Spectroscop@mdrthe pseudo-critical temperature
were also performed. We confirmed wavefunctions are spaltalized, which implies hadrons
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Figure5: Sea quark mass dependence of pseudoscalar(left panelatud meson masses(right panel) at
finite temperatures oN; = 8 lattices. Masses at zero temperature are used for noatiatiz

are bound states even near the pseudo-phase transitidn Psing the measured wavefunctions
for smearing, we extracted meson masses. On latticesNyith 8, we found the pseudoscalar
and vector meson masses do not show any significant shifts their zero temperature values.
Calculations or\; = 10,12 are ongoing toward the continuum extrapolation.
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