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1. Introduction

Numerical simulations based on the lattice QCD are powerfultools to investigate the strongly
coupled quark gluon plasma. Lattice QCD can give non-perturbative results in a model independent
way. The phase structure of QCD as well as thermodynamic properties have been studied [1]. Most
finite temperature QCD simulations have been performed withthe staggered fermion. Numerical
costs for the staggered fermion are relatively small, compared with other fermion formulations.
N f = 2+1 QCD simulations including dynamical up, down and strange quarks have been carried
out by many collaborations. They showed thatN f = 2+ 1 QCD has a crossover at the physical
point [2] and the crossover temperature in the continuum limit is 150− 190[MeV] [1]. A subtle
point of the staggered fermion is the fourth-root trick of the quark determinant, which makes the
action non-local and complicates the continuum extrapolation [3]. Cross checks with different
fermion formulations are desirable.

In contrast to the case of the staggered fermions, the Wilsonfermion has a simple structure on
quark flavors. The Wilson fermion does not need the fourth-root trick. Pseudo-order parameters
satisfy theO(4) scaling well with the RG improved gauge action [4], which leads to a reliable chiral
extrapolation. But, simulations using the Wilson fermionsare limited due to their computational
demands. Only one group reported the chiral and continuum limit value of critical temperature
Tc = 166−173[MeV] [5].

In this work, we study the phase structure ofN f = 2 QCD using the clover improved Wilson
fermion combined with the RG improved gauge action. We employ anisotropic lattices with smaller
temporal lattice spacing than the spatial one to reduce discretization effects of thermodynamic
quantities and to obtain more data points in the temporal direction. Simulations are performed on
83×8, 103×10 and 123×12 lattices. We determine pseudo-critical points by the Polyakov loop
susceptibility. The critical temperature in the chiral limit is obtained by chiral extrapolations of
pseudo-critical points usingO(4) scaling function. We also check the existence of bound states
of mesons by measuring their wavefunctions, and obtain pseudoscalar and vector meson masses
around the phase transition point.

2. Method

We performed full QCD simulations with two flavors of degenerate up and down quarks. For
the gauge part, we employ the RG improved action defined by

Sg = β

{

1
γG

∑
x,i, j

c0Pi j(x)+ c1(Ri j(x)+ R ji(x))+ γG ∑
x,i

c0Pi4(x)+ c1(Ri4(x)+ R4i(x))

}

, (2.1)

wherei, j runs in spatial directions andPµν andRmuν are the plaquette and rectangular loop in the
µ −ν plane.c0 = 3.648 andc1 = −0.331 are determined by a renormalization group analysis [6].
They satisfy the normalization conditionc0 + 8c1 = 1, andβ = 6/g2. γG is the bare anisotropy,
which is tuned non-perturbatively so that the ratio of spatial and temporal lattice spacings becomes
two, ξ ≡ as/at = 2 [7]. For the fermion part, we use the clover quark action defined by

Sq = ∑
x,y

qxDx,yqy, (2.2)
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Table 1: Simulation parameters.

size β κ traj

83×8 1.95−2.1 0.1100−0.1275 1000-7000
123×8 2.0 0.1170−0.1265 1000-7000

103×10 2.0−2.1 0.1170−0.1270 1000-4000

123×12 2.05−2.1 0.1170−0.1275 500-6000

Dx,y = δxy −κs ∑
i

[

(r− γi)Ux,iδx+î,y +(r + γi)U
†
x,iδx,y+î

]

− κt

[

(1− γi)Ux,4δx+4̂,y +(1+ γi)U
†
x,4δx,y+4̂

]

−κs

[

rcs ∑
i, j

Fi j(x)σi j + ct ∑
i

Fi4(x)σi4

]

(2.3)

whereκs is the hopping parameter in the spatial direction andκt is the one in the temporal direc-
tion. Fµν is the clover-shaped lattice discretization of the field strength andσµν ≡ (i/2)[γµ ,γν ].
For the clover coefficients, we adopt a meanfield improved value cs = 1/u3

s , ct = 1/usu2
t with

us = (1−1.154/β )1/4, ut = 1. We set the spatial Wilson parameterr = 1/ξ . As in the gauge
sector, the bare anisotropyγF ≡ κtut

κsus
is tuned to satisfyξ = 2 using the dispersion relation [7]. For

convenience, we defineκ .
1
κ
≡

1
κsus

−2(γF +3r−4). (2.4)

Numerical simulations are performed atβ = 1.9−2.1 on 83×8, 103 ×10 and 123×12 lat-
tices using the Hybrid Monte Carlo algorithm. The hopping parameters are chosen asκ = 0.1100–
0.12750, which cover the pi-rho ratiosmPS/mV = 0.75−0.60 at zero temperature. The Polyakov
loops are measured at each trajectory and hadron masses are measured at each 5 trajectories. Sta-
tistical errors are estimated by the jackknife method with bins of 100 trajectories. Our simulation
parameters are summarized in Table 1.

3. Critical temperature

We determine the pseudo-critical temperature from the peaklocation of the Polyakov loop
susceptibility, which is an order parameter in the heavy quark mass limit. Two-flavor QCD is
expected to have the second order phase transition at the chiral limit of zero quark masses. How-
ever, the phase transition is smeared out as quark masses increase, and it becomes crossover. Since
crossover does not have any order parameters, we identify the pseudo-phase transition points where
fluctuations grow. The Polyakov loopL is built of temporal link variables.

L ≡ Tr ∏
t

U4(x, t). (3.1)

We perform Z(3) rotation to limit the phase ofL to a range [−π/3,+π/3]. The Polyakov loop
susceptibilityχL in a spatial volumeV is defined asχL ≡V (

〈

L2
〉

−〈L〉2). Fig. 1 illustrates typical
κ dependence of the Polyakov loop values and susceptibilities. The peak location ofχL is obtained
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Figure 1: κ dependence of the Polyakov loop (left panel) and its susceptibility (right panel) atβ = 2.00 on
83×8 lattice. The peak location ofχL is obtained by Gaussian fits to the data around it.

by Gaussian fits to the data around it, which we consider as a pseudo-phase transition point on the
lattice.

We checked the finite size effects for the pseudo-critical temperature. In a finite size box,
singularities associated with phase transitions become mild. It is necessary to check magnitude
of finite size effects. We performed runs on 83 × 8 and 123 × 8 lattices and found that the peak
locations ofχL agree within 2σ . We don’t find any clear sign of finite size dependence. It is
consistent thatN f = 2 finite temperature QCD has crossover at our simulation point. But, more
systematic study of finite size scaling is needed to confirm it.

We employO(4) scaling function for chiral extrapolations of pseudo-phase transition points.
O(4) scaling is expected from the universality at the chiral limit [8]. O(4) scaling function is

βpc = βct + B(mVWI
q )1/βδ (3.2)

where the critical exponent is obtained byO(4) spin model, 1/βδ = 0.537(7) [9]. We adopt the
vector Ward identity quark massmVWI

q = (1/κpc −1/κc)/2 as an external field.βpc andκpc areβ
andκ at the pseudo-phase transition point.βct andB are free parameters. We fit our lattice data to
thisO(4) scaling function. As in the case on isotropic lattices,O(4) scaling is satisfied well for data
on anisotropic lattices with the RG gauge and clover fermionaction combination. The situation is
illustrated in Fig. 2. Onceβct is obtained from the chiral extrapolation, we can convert itto the
critical temperatureTc.

Tc =
1

Ntat(βct)
, (3.3)

where the temporal lattice scaleat(β ) is set by the rho meson mass at the zero temperature. Fig. 2
plots temporal size dependence ofTc. Our preliminary data predictsTc ∼ 160 MeV in the contin-
uum limit. Our value forTc is slightly smaller than those estimated on isotropic lattices. Anisotropic
lattices may remove discretization errors ofTc in a more efficient way than isotropic lattices.

4. Spectroscopy

We examined temperature dependences of light hadron masses. After we checked that hadrons
keep to be bound states, light hadron spectroscopies are performed around the pseudo-critical tem-
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Figure 2: Chiral extrapolation of the pseudo-critical points (left panel) and continuum extrapolation of the
critical temperature (right panel). For comparison, critical temperatures on isotropic lattices also plotted [4,
5].

perature and zero temperature. On conventional isotropic lattices, it is hard to extract masses from
temporal correlators, because the temporal length is limited by the temperature. Anisotropic lattices
have an advantage in calculating masses, due to finer resolution in the temporal direction.

First, we observed a meson wavefunction around the pseudo-critical point to investigate hadrons
are bound states or not. If hadrons are bound states, their wavefunctions must be spatially localized.
If not, the wavefunctions are wide spread in space. A meson wavefunctionφ(r) is constructed of a
quark fieldq(x, t) as follow.

φ(r) =
∑
x

〈

q(x, t)Γq(x+ r, t)(q(x, t)Γq(x, t))†〉

∑
x

〈

q(x, t)Γq(x, t)(q(x, t)Γq(x, t))†〉 , Γ = γ5,γi, i = 1,2,3. (4.1)

wheret = Nt/2 is employed and three polarizations are averaged for a vector meson. Wavefunctions
of pseudoscalar and vector mesons at zero and finite temperatures are shown in Fig. 3. As in the
case of zero temperature, the wavefunctions are exponentially localized in space. Our results imply
that mesons are bounded even near the pseudo-phase transition point.

Then, we calculated meson spectrum. Since we are interestedin the temperature dependence
of the ground state energy, we enhance the ground state signal using the wavefunction. Meson
operatorsM(x, t) are smeared by wavefunctions.

M(x, t) = ∑
r,r′

φΓ(r)φΓ(r′)q(x+ r, t)Γq(x+ r′, t). (4.2)

Point operator is realized by settingφΓ(r) = δr,0. We can extract meson masses from correla-
tion functions. G(t) = ∑x

〈

M(x, t)M†(0,0)
〉

. Fig. 4 is an example of effective masses,me f f ≡

log G(t)
G(t+1) . Smearing meson operators allow us to extract their masses from smallt region. Corre-

lation functions in the plateau of their effective masses are fitted with cosh to obtain masses.
After computing meson masses at finite temperature, we compare them with those at zero tem-

perature. The ratios of finite and zero temperature masses are plotted in Fig. 5. Out data of vector
meson masses onNt = 8 does not show any clear dependence toward zero mass. It contradicts the
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Figure 3: Pseudoscalar(left panel) and vector meson wavefunctions(right panel) at zero and finite tempera-
tures.
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Figure 4: Pseudoscalar(left panel) and vector meson effective masses(right panel) at finite temperatures.

prediction of the vector manifestation scenario that vector meson masses approach to zero in the
chiral limit of zero quark masses at the critical temperature [10]. One of possibilities that conceals
the decrease of vector meson masses toward the chiral limit is a lattice artifact associated with a
finite lattice spacing.O(a) may modify the chiral behavior. To clarify this point, calculations at
finer lattice spacings are needed. Computations onNt = 10 and 12 lattices are ongoing.

5. Conclusions

We investigated the phase structure ofN f = 2 QCD using the RG-improved gauge action and
the clover-improved Wilson quark action onξ = 2 anisotropic lattices. We determined pseudo-
critical points at finite quark masses by the Polyakov loop susceptibilities. The pseudo-critical
points are found to be consistent withO(4) scaling. The critical temperature in the chiral limit
is obtained usingO(4) scaling function. Our value of the critical temperature isTc ∼ 160 MeV,
which is slightly lower than those obtained on isotropic lattices. Anisotropic lattices may reduce
discretization errors ofTc efficiently. For more precise determination ofTc, continuum extrapo-
lation and finite size scaling are needed. Spectroscopies around the pseudo-critical temperature
were also performed. We confirmed wavefunctions are spatially localized, which implies hadrons
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Figure 5: Sea quark mass dependence of pseudoscalar(left panel) and vector meson masses(right panel) at
finite temperatures onNt = 8 lattices. Masses at zero temperature are used for normalization.

are bound states even near the pseudo-phase transition point. Using the measured wavefunctions
for smearing, we extracted meson masses. On lattices withNt = 8, we found the pseudoscalar
and vector meson masses do not show any significant shifts from their zero temperature values.
Calculations onNt = 10,12 are ongoing toward the continuum extrapolation.
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