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1. Introduction

It was argued long ago that melting of quarkonia above the deconfinement transition can serve
as a signature of quark-gluon plasma formation in heavy ion collisions [1]. The basic idea behind
this proposal was that due to color screening the potential between a quark and anti-quark will not
provide sufficient binding at high temperature. This problem can be formulated more rigorously in
terms of quarkonium spectral functions, which can be, in principle, extracted from Euclidean-time
meson correlation functions calculated on the lattice. Attempts doing this based on the Maximum
Entropy Method (MEM) have been discussed over the last few years. The initial interpretation
of data led to the conclusion that the 1S charmonium states survive in the deconfined medium
up to temperatures of about 1 � 6Tc, with Tc being the transition temperature [2, 3, 4, 5]. Recent
analysis, however, has shown that, although MEM can be used to extract reliably quarkonium
spectral functions at zero temperature, at finite temperature it has severe limitations [6].

At zero temperature quarkonium spectrum is well described in non-relativistic potential mod-
els. Since the seminal paper by Matsui and Satz the problem of charmonium dissolution has been
studied in potential models [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. While the early studies used phe-
nomenological potential, more recent studies rely on static quark anti-quark free energy calculated
on the lattice. In fact significant progress has been made in understanding the in-medium modifica-
tion of inter-quark forces via lattice calculations of the free energy of static quark anti-quark pair.
Calculations have been done in pure gluodynamics, 3-flavor and 2-flavor QCD [17, 18, 19], and
preliminary results are also available in the physically relevant case of one heavy strange quark and
two light quarks [20, 21] (the light quark masses correspond to pion mass of about 220 MeV).

Recently attempts to calculate quarkonium properties at finite temperature using resummed
perturbation theory have been made [22, 23]. Resummed perturbation theory appears to be suc-
cessful in calculations of bulk thermodynamics properties [24, 25, 26].

Since the lattice calculations of spectral functions have severe limitations, in [12, 13] it has
been pointed out, that comparison between the lattice data and potential models should be done in
terms of the Euclidean time correlators, for which the numerical results are much more reliable.
Recent studies following this line have also been presented in Refs. [14, 15, 16]. In this contribution
we discuss the calculation of quarkonium spectral functions in a potential model, which uses the
lattice data of the free energy of a static quark anti-quark pair. Since reliable calculations of the
quarkonium correlators are available only in quenched approximation we consider QCD with only
heavy quarks. Further details about this approach can be found in Ref. [27].

2. Charmonium Spectral Functions in Potential Model

For heavy quarks the spectral function can be related to the non-relativistic Green’s function

σ
�
ω ��� K

6
π

ImGnr �	�r 
 �r �	
 E �� �r � �r ��� 0 
 (2.1)

σ
�
ω ��� K

6
π

1
m2 Im

�
∇ � �∇ � Gnr �	�r 
 �r ��
 E �� �r � �r � � 0 
 (2.2)

for S-wave, and P-wave charmonia, respectively. Here E � ω � 2m . At leading order K � 1.
Relativistic and higher order perturbative corrections will lead to a value different from unity [27].
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The non-relativistic Green’s function satisfies the Schrödinger equation� � 1
m

�
∇2 � V

�
r ��� E � Gnr �	�r 
 �r � 
 E ��� δ 3 � r � r � ��� (2.3)

The numerical method for solving this equation is presented in [27]. At zero temperature we
use the Cornell potential V

�
r ����� α � r � σr with parameters motivated by lattice results on static

potential : α � π � 12 and σ � �
1 � 65 � π � 12 � r � 2

0 . In the actual calculations we use a potential
which is screened beyond some distance r � rmed with screening length µ to mimic many body
effects at large energies (see Ref. [27] for further details). At finite temperature we use a potential
motivated by lattice results on the singlet free energy of a static quark anti-quark pair and which is
defined in section IV of Ref. [27]. At large energies, away from the threshold, the non-relativistic
treatment is not applicable. The spectral function in this domain, however, can be calculated using
perturbation theory. We smoothly match the non-relativistic calculation of the spectral function to
the relativistic perturbative result [27]. Euclidean time correlators G

�
τ 
 T � at some temperature T

can be calculated from the spectral functions using the integral representation

G
�
τ 
 T ���! ∞

0
dωσ

�
ω 
 T � K �

ω 
 τ 
 T ��� (2.4)

Here the integration kernel is

K
�
ω 
 τ 
 T ��� coshω

�
τ � 1 � � 2T �"�

sinh
�
ω � � 2T �"� � (2.5)

3. Correlators at Zero Temperature

In this section we discuss the comparison of the model calculations with zero temperature
lattice data from isotropic lattices [4]. The lattice spacing has been fixed using the Sommer-scale
r0 � 0 � 5fm. Its value is slightly larger than the one used in Ref. [4], since there the string tension
of # σ � 420 MeV has been used to set the scale. Calculations have been done at the charm
quark mass which corresponds to an ηc mass of about 4 GeV. The renormalization constants of
the lattice operators have been calculated in 1-loop tadpole improved perturbation theory (see Ref.
[4] for further details). The K factors in Eq. (2.2) have been chosen such that at large distances
the correlators calculated in potential models agree with the lattice results. In Fig. 1 we show the
pseudo-scalar correlator calculated on the lattice and in the potential model for several screening
parameters, together with the corresponding spectral functions. As one can see from the figure the
choice of the ad-hoc screening parameters have almost no effect on the Euclidean correlator. We
see a reasonably good agreement between the lattice data and potential model calculations. Also
shown in the figure is the correlator corresponding only to the non-relativistic spectral function. At
small Euclidean times this falls below the lattice data by more than an order of magnitude. Thus
correlators calculated on the lattice are sensitive to the relativistic continuum part of the spectral
functions. Similar analysis of the correlators have been done in the vector, axial vector and scalar
channels.
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Figure 1: The pseudo-scalar charmonium correlator calculated in our model and compared to the lattice
data of Ref. [4]. In the inset, the corresponding spectral functions σ $ ω %'& ω 2 are shown.

T 0 1 � 2Tc 1 � 5Tc 2 � 0Tc

s0 10.975 9.541 9.462 9.384
M
�
1S � 9.405 9.390 9.374 9.343

Ebind 1.570 0.151 0.088 0.041

Table 1: The mass and the binding energy of the 1S bottomonium state at different temperatures, and the
continuum threshold.

4. Temperature-dependence of Quarkonium Correlators

In this section we study the temperature-dependence of quarkonium spectral functions and
correlators. Since the correlators depend on the temperature through the integration kernel and the
spectral functions, it is customary to study the temperature dependence of the correlators in terms
of the ratio G

�
τ 
 T �"� Grec

�
τ 
 T � , where

Grec
�
τ 
 T ���  ∞

0
dωσ

�
ω 
 T � 0 � K �

ω 
 τ 
 T ��� (4.1)

This way the trivial temperature dependence due to the integration kernel is taken care of. Also
many uncertainties of the lattice calculations cancel out in this ratio. The finite temperature spectral
functions are shown in Fig. 2 for the pseudo-scalar channel. The 1S charmonium state is melted
at 1 � 2Tc. We see, however, a large enhancement of the spectral functions near the threshold. Note,
that the height of the spectral functions near the threshold is comparable to the height of the bump
in the spectral function calculated from MEM [6]. It is therefore possible that the bump of the
spectral functions calculated from lattice correlators using MEM actually corresponds to a thresh-
old enhancement, and was mistakenly interpreted as the 1S state. In the case of bottomonium all
states, except the 1S state, are dissolved above the deconfinement transition. The 1S state can sur-
vive as a resonance until temperatures of about 2Tc. Note, however, that the binding energy of the
1S bottomonium is significantly reduced due to color screening, as shown in Table 1. The binding
energy is defined as the distance between the continuum threshold s0 and the bound state peak.
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Due to the small binding energy the 1S state will acquire a sizable thermal width, and may not
show up as the resonance in the corresponding spectral function. Therefore, the actual dissolution
temperature of the 1S bottomonium will be smaller then the one estimated based on the simple
potential model calculations which do not include the effect of the thermal width [28]. In the insets
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Figure 2: The charmonium (left) and bottomonium (right) spectral functions at different temperatures. For
charmonium we also show the spectral functions from lattice QCD obtained from the MEM at 1 ( 5Tc. The
error-bars on the lattice spectral function correspond to the statistical error of the spectral function integrated
in the ω-interval corresponding to the horizontal error-bars. The insets show the corresponding ratio G & Grec

together with the results from anisotropic lattice calculations [6]. For charmonium, lattice calculations of
G & Grec are shown for T ) 1 ( 2Tc (squares), 1 ( 5Tc (circles), and 2 ( 0Tc (triangles). For bottomonium lattice
data are shown for T ) 1 ( 5Tc (circles) and 1 ( 8Tc (triangles).

of Fig. 2 we also show the corresponding ratio G � Grec. The large changes in the spectral functions
are not visible in the correlation functions. These agree quite well with the lattice results. This
is because even in the absence of bound states the spectral function is significantly larger than the
spectral function corresponding to a freely propagating quark anti-quark pair. In the vector, scalar
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Figure 3: The ratio G & Grec in the scalar and axial-vector channel at T ) 1 ( 5Tc for charmonium (left) and
bottomonium (right). Lattice calculation on isotropic lattices [4, 29] are shown as filled symbols. Open
symbols refer to results from anisotropic lattice calculations of Ref. [6].

and axial-vector channels significant temperature dependence has been found [4, 6, 29]. It has been
shown that this is due to the zero mode contribution, i.e. due to the ωδ

�
ω � -like contribution to the

quarkonium spectral functions [30]. In the vector channel the zero mode contribution corresponds
to the heavy quark transport [31]. The zero mode contribution can be estimated in the free case.
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It can also be shown that the zero mode contribution is absent in the pseudo-scalar channel. If
we add the free theory result for the zero mode contribution to the spectral function calculated in
the potential model we can reproduce the temperature dependence of the scalar and axial-vector
correlator both for charmonium and bottomonium. This is demonstrated by Fig. 3 where G � Grec

for the scalar and axial-vector channels is shown.

5. Conclusions

We discussed the calculations of quarkonium spectral functions and the corresponding Eu-
clidean time correlators in a potential model. We have found that all quarkonium states, except
the 1S bottomonium state, dissolve at temperatures smaller than about 1 � 2Tc. This, however, does
not lead to significant change of the correlators. Zero mode contribution on the other hand could
give a large change in the correlators above the deconfinement transition. We have found that the
spectral functions calculated in our model can explain quite well the temperature dependence of
the quarkonium correlators obtained in lattice QCD.
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