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1. Introduction

One of the most important properties of the quark gluon péagnthe screening of color
charges [1]. It is expected that quarkonium states are cteal due to screening of the color
charges at temperatures somewhat higher than the decoefihéemperature. Moreover, Matsui
and Satz conjectured [2] that quarkonium suppression catielbad as a signature for the forma-
tion of a Quark-Gluon Plasma (QGP). While a calculation adctpal functions is best suited to
study this phenomenon, their reliable calculation at fitgétaperature turns out to be quite difficult
(see e.qg. [3]). We present here a non-perturbative studyea$dreening of heavy quark-anti-quark
interactions at finite temperature which is based on an aisabf the free energy of a static quark
anti-quark pair [1]. Results for the free energy and its\@gives, the internal energy and entropy,
can be used as input to potential model calculations, sed &5 Furthermore, the study of static
free energies is interesting as it allows for a non-pertireaenormalization of Polyakov loops.
While the latter is not an order parameter in the presencgrmdrmical quarks it shows rapid vari-
ation in the transition region and therefore is widely usedéscribe the transition (crossover) in
full QCD, e.g. through effective mean-field theories.

2. Numerical Analysis

This work is based on our large-scale finite temperaturééattalculations in (2+1)-flavor
QCD in the region of small quark masses [6]. Our simulatioveHaeen performed with a physical
strange quark mass and degenerate light quark masges,0.1ms (ms being the strange quark
mass), which correspond to a light pseudo-scalar mgss 220MeV. Lattice sizes vary between
16° x 4 and 24 x 6 lattices which correspond to the same physical volume. |ditiee spacing
and thus the temperature scale has been fixed using the Seoatep = 0.469 fm [7]. For every
value of the finite temperature coupling constant we peréotrroorresponding zero temperature
simulations where we extracted the zero temperature sfasitk potential. This has been used to
set the temperature scale and to determine the renorniafizatnstants used for a renormalization
of the finite temperature free energies.

In our simulations we used the exact RHMC algorithm for setiohs of (2+1)-flavor QCD.
Further details about our simulations can be found in R&f8]. On a large set of gauge field
configurations, which are separated by 10 trajectories, ave balculated the singlet free energy,
F1(r,T), of a static quark anti-quark pair. The singlet free eneagyvell as the zero temperature
static potential, are defined up to an additive constantsing temporal Wilson linesV(r) we
write the former as

exp(—F1(r,T)/T +C) = %(TrW(?)WT(O» , C=2N;In(Zg) . (2.1)

The zero temperature potential is calculated from smearié&bMoopsW (r, 1),

Vir—o/(r) = — lim In (zmzv%) . (2.2)

HereZr is zero temperature renormalization constant. Some detialur Wilson loop calculations
are discussed in [8]. The above definition of a singlet freergynrequires gauge fixing. For all
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Figure1: The singlet free energy calculated in (2+1)-flavor QCD oh:24 lattices at various temperatures.
The solid line shows a fit to the zero temperature potential.

our calculations we use Coulomb gauge as it is done also ity pravious closely related studies
[9, 10, 11, 12, 13, 14]. In the zero temperature limit the lEhfree energy coincides with the
well-known static potential and, in fact, an analysis in a&dixgyauge has been used also in this
limit to calculate it [15]. At finite temperaturg;(r, T) characterizes the in-medium modification
of inter-quark forces and color screening.

The renormalization constadk introduced in Eq.2.2 is determined by matching result for
the zero temperature static potential to the string paigiing(r) = —71/12r + or, at distance
1.5rg. Renormalizing the potentials at one point makes resuliséd for a wide range of cut-off
values coincide quite well at all distances [6]. Unlike irr @arlier work, where we renormalized
potentials at a short distance point, we now do so at a larigtainte,r = 1.5rg This has the
advantage that we can use the same large distance stringiglody,ing(r), for all our potentials,
irrespective of the flavor content used in the simulation.siart distances this would not be the
case as the running of the coupling entering the Coulomb tdrihe potential is sensitive to the
number of flavors [6]. Of course, it also is important to ndtattwe now have sufficient statistics
to perform a reliable matching of potentials at the reldyivarge distance = 1.5rq. This also has
the advantage that lattice-induced short-distance etsif@re significantly reduced in our analysis.

In Fig. 1 we show the singlet free energy calculate@n- 1)-flavor QCD on 24 x 6 lattices
together with thelT = O static potential. As one can see from the figutgy, T) is temperature
independent at small distances and coincides with the penpdrature potential as expected. At
large distances the singlet free energy approaches a nbwsiae. This can be related to string
breaking at low temperature and color screening at high ¢eatpres. Note that the distance at
which the free energy effectively flattens off is decreasiith increasing temperature. This is
another indication for color screening at high temperature
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Figure2: The renormalized Polyakov Loop calculated in{2)-flavor QCD on 18 x 4 and 24 x 6 lattices
for different quark masses along a line of constant physgitso shown in the figure are corresponding result
from calculations in 2-flavor QCD and the SU(3) gauge theory.

3. Renormalized Polyakov L oop

The expectation value of the Polyakov lodp(r)) = (TrW(T)) is the order parameter for
deconfinement in pure gauge theories. In full QCD there isogallorder parameter because dy-
namical quarks break the relevai(t3) symmetry explicitly. Still it remains an interesting quint
that can be used to analyze deconfinement in QCD as it shovgsdaimarease in the crossover re-
gion [8, 16, 17] and can be used to determine the transitimpéeature [8, 17]. The Polyakov loop
defined above strongly depends on the lattice spacing andresgenormalization. The singlet
free energy and the Polyakov loop correlator, which definesolor averaged free energy, satisfy
the cluster decomposition

lim exp(—Fy(r, T)+C) = é lim (L(F)LT(0)) = [(L(0))]2 = L2 (3.1)

r—oo [—oo

The normalization constant in the above expression is fikedugh the renormalization of the
zero temperature potential as discussed in the previou®isecThus, at large distances color
averaged and singlet free energies approach the samerphRstd ). We defined the renormalized

Polyakov loop as

Fo(T)
2T

which due to the cluster decomposition is the same as

L"(T) = exp(—

) 3.2)

L"(T) = (Zr(g®)™L. (3.3)

Here the renormalization constants are the same as in EqQi2numerical results foc""(T)

obtained in simulations with different number of light gkidlavors (two-flavour and pure gauge
see [14]) and different lattice spacings are summarizedgr2FOne can see from that figure that
L""(T) shows an almost universal behavior as functiofi pf. for all quark masses studied by us,
including the 2-flavor simulation. This suggests, that ia tegion of small quark masses, which
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Figure 3: Temperature dependence of the effective running couplingrgous values of the temperature
(left). The black solid line shows the result at zero tempeea The right hand figure shows the maximal
value attained byt (r, T) in calculations of QCD with different flavor content.

has been studied by us, the flavor and quark mass dependetieedgficonfinement transition can
be almost entirely understood in terms of the flavor and quaeiks dependence of the transition
temperaturd.. We note that a similar renormalization procedure of the&av loop as discussed
above was also used in Ref. [17]. We also note that in Ref. §ldifferent normalization con-
vention for the zero temperature potential has been usedhenefore the absolute value of the
Polyakov loop is quite different.

4. Running Coupling

Now let us discuss our results on the distance and temperdggendence of the singlet free
energies in terms of a running coupling constant. We defiegdgmperature-dependent coupling
analogously to the zero temperature case through the fexgyen

et (1, T) = grzidFlé:’T) :

In Fig.3 (left) we present our results for the running coogli At short distances, especially
at low temperatures, it coincides with the zero temperatowpling until screening sets in. After
reaching a maximal value it decreases slowly. At higher &neipire the shift of the maximum to
shorter and shorter distances again indicates that sogeeffects set in at shorter distances. How-
ever still the running coupling rises quadratically at intediate distances, before screening sets
in. This is arises from the linear confinement part of theisbtential and signals the remnants
of confining forces even at rather high temperatures. Weetbee, can conclude that remnants
of the confining force still are important for physics at mdely large distances even in the high
temperature phase of QCD. The maximal value of the effectimaing coupling along with fits
inspired by a perturbative Ansatz are shown in the right hazart of Fig. 3. One can see that the
maximal value decreases only slowly with temperature aed et three times the transition tem-
peratures it is only a factor five smaller than at the tramsitemperature. For comparison we show
here also results obtained in simulations of 2-flavor QCDh\étger quark mass{/T = 0.4) and

(4.1)
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Figure 4: Screening masses in {21))-flavor QCD versus temperature. For comparison results fralcu-
lations in 2-flavor QCD and pure gauge theory are includedes represent fits to leading order perturbation
theory with free pre-factoA.

pure gauge theory results. The large value of the effectupling is again due to the linearly ris-
ing term in the potential. As one can see from the compari$oesults obtained for two different
lattice spacings, cut-off effects for the effective conpliare small.

5. Screening masses

To analyze the exponential screening of free energies g ldistances we extract screening
masses. They are determined from fits to the large distanteopéhe free energy where we
subtracted the asymptotic cluster value,

Fu(r,T) — Fu(r =, T) :—g@exp(—mD(T)r). (5.1)
To leading order in perturbation theory the screening ([B¢loyass is given by
m N 1/2
s _A<l—|—€> o(T) (5.2)

In Fig.4 we show screening masses as function of temperataraddition to results from our
(2+1)-flavor simulations we also show results from calculatioeggrmed in 2-flavor QCD and
pure gauge theory. These numerical results are comparezhdlingy order perturbation theory,
where we allow for a pre-factoA which is fixed by a fit to the data. This pre-factor is slightly
different for each case. We can see, however, that the tatuperdependence of the screening
masses in all cases is described quite well by the pertuebAtisatz.

6. Conclusions

We have significantly expanded our analysis of heavy-queldted physics through large scale
simulations in (2+1)-flavor QCD. The renormalized Polyakmsp shows little cut-off dependence



Free energy of static quarks Konstantin Petrov

and can be calculated reliably on relatively coarse lattid®e find that its flavor and quark mass
dependence can be absorbed almost entirely in the flavorwzartt mass dependence of the tran-
sition temperature. The analysis of screening masses sihawvson-perturbative effects can be
well absorbed in a pre-factor in front of the leading ordettymbative result which is temperature
independent in the entire temperature range analyzed Tikigindicates that the true perturbative
limit, corresponding t&A = 1, is approached only very slowly.

The temperature dependent effective running couplingtaohsises quadratically at moderate
distances also above the transition temperature. Aftehreg a maximal value that is reached at
smaller distances with increasing temperature it dropomeptially. Also this maximal value
decreases only slowly with temperature.
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