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Under suitable non-equilibrium conditions QCD plasma can develop plasma instabilities, i.e. ex-

ponential growth of some modes of the plasma. It has been argued that these instabilities can

play a significant role in the thermalisation of the plasma inheavy-ion collision experiments. We

study the instability in SU(2) plasmas using the hard thermal loop effective lattice theory, which

is suitable for studying real-time evolution of long wavelength modes in the plasma. We observe

that under suitable conditions the plasma can indeed develop an instability which can grow to a

very large magnitude, necessary for the rapid thermalisation in heavy-ion collisions.
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(a) (b)

Figure 1: The longitudinal expansion of the collision volume makes the initial parton momentum distribu-
tion (a) squeezed along the plane perpendicular to the collision axis (b).

1. Introduction

One of the most striking results from the heavy ion collision experiments at RHIC is the rapid
thermalisation of the plasma; the thermalisation appears to occur in time<∼1fm/c after the collision
[1]. At sufficiently large collision energy the QCD coupling is small and perturbation theory should
be applicable. However, it turns out that the perturbative processes cannot alone explain rapid
thermalisation [2, 3]. It has been argued that the strongly non-equilibriuminitial conditions may
lead to exponential growth of certain long wavelength modes of the plasma —plasma instability
[4]. These growing modes might play a significant role in the thermalisation of the plasma. The
plasma instability arises because the plasma initially expands predominantly along the collision
axis (ẑ direction), and the momentum distribution of the produced partons becomes anisotropic:
the momentum distribution becomes much smaller alongz-axis direction than along the transverse
directions, no matter what the initial distribution of the partons was (Fig. 1). The initial momenta
of the partons is of order of∼ few GeV (which is the saturation scale of the original nuclei in color
glass condensate models), which we denote as the “hard” scale.

The hard partons will interact with the soft gauge fields; assuming that the soft fields have small
initial amplitude the non-abelian nature of the fields can be ignored. In this case the anisotropic
parton momentum distribution causes the soft fields to become unstable againstthe generation of
x̂ andŷ -direction magnetic fields: the magnetic fields focus the current carried by the partons by
amplifying the inhomgeneities in it, which in turn leads to increasing magnetic fields. This leads to
exponential increase in the magnitude of the magnetic fields, analogously to theWeibel instability
in electromagnetic plasmas (Fig. 2). However, for the case of QCD the current is mostly carried by
saturation scale partons, which are mostly hard gluons.

The growth in the small-field regime happens only in a certain range of wave vectors (depend-
ing on the degree of anisotropy in the hard parton distribution) and it is maximalat a particular
wave vector,kkk∗, oriented along ˆz-direction. In QED the growth can continue until the magnitude
of the gauge field reacheseA∼ phard; when this happens the hard charged particles are deflected to
random directions and their distribution becomes isotropic. However, in QCDthe field equations
become non-linear at much smaller magnitudegAk∗ ∼ k∗ (or B2 ∼ g2k4

∗), becausek∗ ≪ phard. Thus,
the central question is what happens to the unstable growth when the magnitude of the chromo-
magnetic fields reaches this “non-abelian” value. In Ref. [5] it was suggested that the growth could
persist beyond the non-abelian value if the system “abelianises,” i.e. it becomes essentially dom-
inated by only one color degree of freedom. Thus, as the fields continue growing the distribution
can isotropize through the mechanism described above.
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Figure 2: The Weibel instability in the electromagnetic plasma. Arrows show the electric current, circles the
magnetic flux perpendicular to the plane. The magnetic field amplifies the inhomogeneities in the current,
which in turn amplifies the magnetic fields.

Because of the large amplitude of the chrmomagnetic fields the problem is non-linear and non-
perturbative. The cleanest way to approach the problem is to perform real-time evolution on the
lattice using so-called “hard loop approximation”: the infrared modes are classical chromomagnetic
fields, and the hard partons are treated as a classical charged particle current on the soft field
background. This approximation is justified because we will be dealing with large occupation
numbers for the soft fields, and the expansion renders the hard particledistribution dilute. We also
consider only non-expanding systems with fixed anisotropic hard particle momentum distributions
in order to focus on the effects of the anisotropy. Physically this corresponds to sufficiently large
times where the expansion rate is parametrically small compared to the rates associated with the
instability.

This approach has previously been applied to 1+1 -dimensional case [6]where it was ob-
served that the fields indeed continue to grow in the non-linear regime. However, 3+1 dimensional
simulations with moderate anisotropies have indicated that the instabilities are quenched as the
non-linearities become important [7, 8]. In this work we shall study considerably stronger mo-
mentum anisotropies than above, together with large lattice volumes and small latticespacing. A
detailed report of the results can be found in [9]. Strong anisotropies are also studied in Ref. [10],
but with initial conditions not leading to further exponential growth.

2. Hard Loop effective theory

The hard modes are described as on-shell particles moving in soft background fields, with a
distribution function

fhard(x, ppp) = f̄ (ppp)+λ a f a(x, ppp)+ . . . (2.1)

where the anisotropic gauge singlet partf̄ (ppp) we assume to be constant in space and time, andf a

describes fluctuations in the current carried by the particles. The systemevolves according to the
Yang-Mills-Vlasov equations of motion

(DµFµν)a = Ja,ν
hard= g

∫
ppp

vν f a, (v·D f )a +gvµFa
µ i

∂ f̄
∂ pi = 0, (2.2)

wherev = (1, ppp/p). Defining

Wa(x,vvv) ≡ 4πg

∞∫

0

dpp2

(2π)3 f a(x, ppp) (2.3)
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Figure 3: Anisotropic hard particle distributions used in this work,together with the distribution used by
Arnold, Moore and Yaffe [7]. The distributions are plotted so that the relative number of particles moving to
directionvvv is proportional to the length of the radial vector from the center of the plot.

we can integrate the equations of motion over|p|, obtaining

(DµFµν)a =
∫

dΩvvv

4π
vνWa, (v·DW)a = m2

0vµFa
µ iU

i(vvv). (2.4)

Here the vectorU i(vvv) characterises the anisotropic singlet part of the hard distributionf̄ :

m2
0U

i(vvv) = −4πg2

∞∫

0

dpp2

(2π)3

∂ f̄ (pvvv)
∂ pi . (2.5)

For thermal distributionf̄ becomes isotropic, and we would obtainUUU = vvv andm0 = mDebye, the
Debye mass of the thermal plasma. We note thatm0 is the only dimensionful parameter in the
problem.

The equations of motion 2.4 are discretised on the lattice. The current carried by the hard
particles is described by theWa(x,vvv)-fields. These are quite expensive to handle, because they live
on manifoldR3×S2. We treat these by expanding the distributions in spherical harmonics:

Wa(x,vvv) = ∑
ℓm

Wa
ℓmYℓm(vvv), f̄ (ppp) = ∑

ℓ

f̄ℓ(p)Yℓ0(vvv), (2.6)

whereℓ = 0. . .Lmax, the cut-off in spherical harmonics expansion. Thus, at each siteWa has
(Lmax+ 1)2 real degrees of freedom. This approach has been also used in Refs.[7, 10] to study
the plasma instablity. Originally, this method was successfully applied to the calculation of the
sphaleron rate in hot SU(2) gauge theory on the lattice [11].

For simplicity, we are using SU(2) gauge group in our analysis. We present the results using
4 different values for the anisotropy of thēf , both weaker and much stronger than used in [7].
Each distribution is characterised by the maximal spherical harmonic index used to parametrisēf ,
Lasym= 2, 4, 14 and 28 (Lasym< Lmax). For each value ofLasymwe approximately maximised the
possible asymmetry of the distribution; the motivation for this is that this choice should minimise
the requiredLmax cutoff. The anisotropic distributions are shown in Fig. 3. The degree of the
anisotropy is characterised by theanisotropy parameterη2 ≡ 3〈v2

z〉/〈v
2〉; for the distributions here

this isη2 = 0.6, 0.4, 0.086 and 0.022 forLasym= 2, 4, 14 and 28.
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Figure 4: Growth of the energy with small (left) anisotropy,Lasym= 4 and large (right) anisotropy,Lasym=

28. In both cases the energy grows until the magnitude of the growing magnetic field reaches the value
where non-abelian effects become significant;B2 ∼ (k∗)2. With strong anisotropy, the growth continues
until regulated by the lattice cutoff.

In our simulations we are using very large lattice volumes (up to 2403) and vary the lattice
spacing by more than order of magnitude. TheLmax-cutoff is up to 48. In general, the infinite
volume and continuum limits are under control; for details, see [9].

3. Results

In Fig. 4 we show the growth of the soft field energy density at small and large anisotropy,
measured at different lattice spacings. Initially the soft fields have small white noise fluctuations.
In both cases the instability causes exponential growth of energy density inthe linear (weak field)
region. However, when the field evolution becomes non-linear (shown asvertical lines), the growth
is rapidly quenched at weak anisotropy, independent of the lattice spacing. This is in accord with
the results of Ref. [7].

However, at strong anisotropy the growth continues in the non-linear regime, and the smaller
the lattice spacing is, the further the growth persists. The cutoff is due to latticecutoff, as can
be seen in Fig. 5: here we show the chromomagnetic field energy density at final saturation as a
function of the lattice spacing. The saturation energy is well described as apower law of the lattice
spacing.

Thus, the results clearly indicate that unstable growth is possible in the non-linear regime.
What field modes do grow here? We study this by fixing to Coulomb gauge and measuring the
occupation numbers of the gauge field,f (kkk) ∝ |kkk|A(kkk). The evolution of the occupation numbers
at large anisotropy is shown in Fig. 6. In the linear (early) regime the growthneark∗ ≈ m0 is
clearly visible. However, when the system becomes non-linear atf (k∗) ∼ 1, the growth atk∗ is
completely quenched, butf (k) at higher wave numbers shoots rapidly up. The final occupation
number distribution is very close to the thermal one. Thus, the growth mechanism appears to
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Figure 5: Saturation magnetic field energy as a function of the latticespacing at large anisotropies. The red
hashed area is forbidden because energy density there is toolarge to be supported by the lattice.

be very different from the abelianisation proposed in [5]. We have checked this behaviour using
various gauge invariant measurements (k-sensitive operators, cooling), with fully consistent results,
see Ref. [9]. Unstable growth in the non-linear regime has also been observed in Ref. [12], but using
very different methodology.

In summary, we observe clear signal of rapid soft field energy growth inthe non-linear (large
magnitude) regime when the hard particle distribution is strongly anisotropic, suggesting possible
role in the thermalisation of the plasma in heavy ion collision experiments. However, the mecha-
nism through which the growth proceeds is still unknown and under further study. There are also
important caveats: perhaps most significantly, the initial conditions in the cases reported here all
have small magnitude soft fields. When the magnitude of the initial fields is increased the non-
linear growth is reduced [9, 10].

DB acknowledges support from DFG funded Graduate School GRK 881, and KR support from
Academy of Finland grants 104382 and 114371. The simulations in this work have been performed
at the Finnish IT Center for Science (CSC, Espoo, Finland).
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