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1. Motivation

Lattice simulations suggest that the chiral phase transition and deconfinghnase transition
appear at the same temperature. It is believed that there is a connecti@ebdioth phase tran-
sitions. While for the chiral phase transition we have a well established giofuhe symmetry
breaking mechanism the picture of the deconfinement phase transition saimalear. Although
there has been much progress in the last years the final link connectimglimse transitions is
still missing.

The order parameter of the chiral phase transition is the chiral coneejasg. Banks and
Casher[[1] related the chiral condensate to the eigenvalue densithe Dirac operator near zero,

(qg) = —mp(A = 0). (1.1)

Recently, Gattringef]2] established a formula which relates the eigenwafltfesDirac operator to
the Polyakov loopP, the order parameter of the deconfinement phase transition in the qdeapehe
proximation. This relation provides a natural link between the chiral casaterand the Polyakov
loop via the eigenvalues of the Dirac operator. The hope is to obtain somatiigig how both
phase transitions are connected.

After a short introduction we will discuss several aspects of this newioeldetween the
Polyakov loop and the eigenvalues, in particular we focus on the volurtiegaad the continuum
limit. We will present numerical results for both quenched and dynamical @adwill also
compare to the free case.

2. Introduction

Starting point of our discussion are the eigenvalues$ the massless staggered Dirac operator,
DW = +iAW with Areal > 0. The massless staggered Dirac operator is defined by

12 +
Dyy = 2 Zl [nxuuxu O )y — Nix—pyuYix—pyu - 5(X—ﬂ)~y] ) (2.1)
‘J:

whereny, is the usual staggered phase factor kg are the link variables. Note that we use

periodic boundary conditions in all four directions for the calculation of élgeenvalues. The

Polyakov loop is defined b = ﬁ SaTre [nﬁ;zlu4(ﬁ, n4)] and can be expressed in terms of

the eigenvalues in the following waE [2],
20
—_iN N; N N
P=i BMNS3Z{l')\i’lJrZ')\LZ”LZK"\LZ}' 2.2)

Ns andN; is the spatial and temporal extension, respectively, ang 1,z z*}. Note that\; has

to be even for staggered fermions. The sum @verEq.[2.2 is meant to sum over all eigenvalues
Aix, where); x stands for the eigenvalues calculated on a given gauge configuration iwiZs—
rotated byX € Z3. To be less confusing, for a given gauge configuration we geneltateee
Zz—rotated gauge configurations and calculate all eigenvalues of the Queaator for each of
the three configurations. The Polyakov loop can then be expressesuas aver all eigenvalues



The Polyakov Loop and the Eigenvalues of the Dirac Operator Wolfgang Séldner

.04k 20 1| — complex sectors of P
' — real sector of P

002} L5

/<

S~——

& o —— 2,

N o0
0.5

—0.04}
02 o1 0.0 0.1 02 0.0, 200 100 600 800 1000
ReP()\) i (number of eigenvalue)

Figure 1. On the left hand side we plottd®(A) in the complex plane for a typical gauge configuration
atT > T for Ny = 4. The right hand side shows a sketch of the correspondirenegdues in the real and
complex sector oP.

calculated on all three rotated gauge configurations] Efy. 2.2. By lookBg[@.2 one immediately
may ask what part of the eigenvalue spectrum contributes most to the Bolladp. To answer
this question one introduces the following cumulative sum,

22N
3MN3 Z {1')‘i',\li+z"\i7Ntz*+Z*'Ai,N[z}a (2.3)

S /\i,X<)\

P(A) = iM

where we sum over all eigenvalues up to a certain (maximal) Valuleet us briefly make some
comments on this formula before discussing an example. Note that the seeter tvb Polyakov
loop sits for a given configuration (&t> Tc) is solely determined by multiplying th x’s with the
appropriateZz—factors. Let us assume for the moment that the gauge configurati@sponding
to A 1 hasP in the real sector. Remember that the two complex sectdPsamé physically equiv-
alent. Therefore, the eigenvalues in the complex sectors of the Polyado\ate approximately
the same); ; ~ Ai ». Making use of this we obtain for Efy. 2.2 the following approximate relation,
P(A) ~ S xr At = Altompied- This relation illustrates the fact th&(A) is built up by the
"response” of the eigenvalues on the differegtsctors. As an example we have plotRa ) for
a typical gauge configuration in the complex plane on the left hand sidewéfly On the right
hand side we plotted a sketch of the corresponding eigenvalues caldulétedeal and complex
sector of the Polyakov loop. We observe that for small eigenvalues thpler sector dominates.
By looking at our previously derived relation we see that this results iathegvalues ofP(A)
while for large eigenvalues it is the other way round. This shows that tregehof the eigenvalues
with respect to the different sectors of the Polyakov loop is crucial.
Finally, we perform the ensemble average on the absolute vaR@\of
i 22 > (2.4)
3N NS

This is the object we will study for the rest of our discussion. At this poihtysedraw the reader’s
attention to Refs[[3[H 5] were similar investigations has been performedstsiggered and Wilson
fermions.
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Figure 2: Results for(|P(A)|) for our quenched configurations. The upper (lower) plotsespond to
T > T (T < Te). The plots on the left hand side illustrate the volume delpane, the plots on the right hand
side are rescaled such tH#®(Amax)|) is the same for all three volumes. In the later case we obskeatéor
eachp all three curves lie above each other telling us {fatA )|) has the same volume scaling thHan

3. Data

In this section we present several numerical resultg|fA )|). We start with results for the
quenched case where we have used standard Wilson gauge actiostafi$te varies from- 10
configurations for the largest latticé 8p to ~ 100 configurations for the smallest lattice. The
eigenvalues were calculated on a single work station using the ARPACK liffffary

Let us first take a look at the plot on the upper left side of fidlire 2 witere T, and the
Polyakov loop is finite. What we notice right away is that the main contributiongdiblyakov
loop comes from the large eigenvalues which is somewhat surprising smpaysically relevant
part of the spectrum should be the infrared. We will comment on this lateAoother surprising
observation is the dip of the curvesate 1.7 — 1.8. Naively, one might expect that the cumulative
sum(|P(A)|) is a monotonically increasing function. However, by looking at figire 1 tbisbior
becomes clear. The dip ifiP(A)]) (curves in the upper left plot of figulé¢ 2) corresponds to the
region whereP(A ) (see figurd]1) passes zero, the bump in the curvaéssat.4 corresponds to the
region whereP(A ) takes its negative values. This structure seems to be quite interesting and one
may ask whether it will survive the infinite volume and the continuum limit.
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Figure 3: The upper plots show the behavior §P(A)|) as we decrease the lattice spacmat fixed
T =~ 1.2T.. The plot on the right hand side is plotted in physical uriise lower plot showg|P(A)]) in the
free case for the same valuesifat quite large spatial volume.

In figure[2 we illustrate the volume dependence(|6f(A)|). On the upper plots we show
results for three volumes®463, 83 with N, = 4 at a temperature slightly abo¥g The plot on the
upper right hand side shows rescaled curves where we have(f@d)|) = (|Pssyal) atA = Amax
for all three volumes. Remember tHatAmax) is just the ordinary Polyakov loop. Beside the
curve corresponding to the smallest volume, which shows small deviatiansuthies lie above
each other. This observation tells one thatTor T (for sufficiently large volumes)|P(A)|) has
the same volume scaling than the Polyakov loop itself. This in turn means thatub&isgrwill
survive the infinite volume limit.

For T < T, the situation is similar. On the lower left hand side of figlre 2 we plotteth )|)
for the same three volumes. The lower right plot shows the corresporetdingled curves where we
again fixed(|P(Amax)|) = (|Pg3.al). Again, the curves lie above each other showing tfatA )|)
scales like the Polyakov loop also beldw Because below, the Polyakov loop vanishes in the
infinite volume limit we find that als@|P(A )|) will vanish in this limit. So in this case the structure
does not survive the infinite volume limit. Note that knowing the volume depedei|P(A)|)
will keep the computational costs significantly lower because one do nettbg@erform expensive
computations on large volume lattices.
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Figure4: We plotted(|P(A)|) using dynamical§ = 3.26,3.36) and quencheB(= 5.4,5.8) configurations.
The dynamical configurations were generated with masge®.0065 andns=0.065. The temperature in
the dynamical case differs slightly from the quenched one.

Let us now look at how(|P(A)|) behaves as the lattice spaciag— 0. Since forT < T
(IP(A)[) vanishes in the infinite volume limit anyway we will discuss only resultsTfos T.. The
upper plots in figur¢]3 illustrate our results fdr= 4,6, 8 at fixedT ~ 1.2T; plotted againsA in
lattice and physical units. Let us focus on the upper left plot. We find tratif= 6 there is a
bump and a dip in the curve similar to that in the curve Npe= 4. ForN; = 8 we also observe
a large bump but because in this case the statistic is quite limited and the spatial \®harter
small the signal is quite noisy. We notice that, as we go to smaller lattice spacirgrabires
in the curves move towards the ultraviolet (UV) part of the eigenvaluetgspea@nd the Polyakov
loop obtains its final value more from the very end of the UV part of thetspec

Let us compare these results to the free case where an analyticalstapifes the eigenvalues
is known. The lower plot in figurfl 3 shows our results in the free casthéosame three values of
N; at quite large spatial volume. We find that the shape as well as the positioa béithps and
dips of the curves are surprisingly similar to the corresponding resulte afitanched data (upper
left plot). This leads to the following conclusion. As we approach the coatmlimit (|P(A)|) at
small values ofA is essentially zero. At somewhat large eigenval{eéA)|) starts to show wild
fluctuations which cancel out at the very end of the UV part of the emaevspectrum where the
Polyakov loop obtains its final value.

We remark that it might be not too surprising that the Polyakov loop is domirmstéae UV
part of the eigenvalue spectrum as the Polyakov loop is related to thegatapaof an infinitely
heavy quark. By looking at the quark propagator in the spectral septation,

Wi (X) l.U)T $%

A+im (3.1)

Sxy) =3
A
wherey, (x) are the normalized eigenvectors of the Dirac operator, we note that threreages
under the sum are weighted by 4-im)~L. For a very heavy quark (as — ) the relative weight
of each eigenmode becomes approximately the same. Therefore, UV eemhoam dominate the
propagation of an infinitely heavy quark, i.e. the Polyakov loop.
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Finally, we compare the quenched results to dynamical results yelifigt3 fermions with
improved gauge action and quark massgs0.0065 anans=0.065, see Ref[][7]. On the left (right)
hand side of figurg]4 we plotte@P(A)|) for T > T (T < Te). Surprisingly, there is no qualitative
difference in the behavior dfP(A)|) in the dynamical case.

4. Summary

In this work we have studied the connection between the Polyakov loop armigbnvalues of
the Dirac operator usingP(A)|). We have focused on the volume dependence and the continuum
limit. We have found that the dominant contribution to the Polyakov loop comes fhe very
end of the UV part of the eigenvalue spectrum. We also compared outsrasthe free case. A
comparison between full QCD and quenched QCD seems to show no qualitarence.

Our findings suggest that the dependence of the eigenvalues on #renlifz sectors of the
Polyakov loop seems to be crucial. Aiming at the connection between confihamechiral sym-
metry breaking our findings can be concluded in the following picture. Algthe eigenvalues
A show a strong dependence on the different sectors of the Polyakpvdeolting in wild fluctu-
ations in{|P(A)|). These fluctuations cancel out in a way that the Polyakov loop obtainsites fin
value from the very end of the UV spectrum. At the same time, since the chimdeasate is zero
aboveTg, the infrared (IR) part of the spectrum shows a vanishing density eheajues.

Below T; the dependence of the eigenvalues on the Polyakov loop sectors waimistne
infinite volume limit which leads to a vanishif¢P(A)|). In particular(|P(A)|) vanishes at the UV
leading to a Polyakov loogP|) = 0. At the same time, the eigenvalue density at the IR part of the
spectrum becomes finite since chiral symmetry is broken.
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