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1. Introduction

A difficulty emerging about the QCD equation of state is, thatturbation theory does not
seem to fit lattice results even at higher temperatures [snwduplings). While available lattice
results both for pure gauge theory [1, 2] and for full QCD [35%(and see also [6]) end at around
5. T, standard perturbation theory converges only at extrernigly temperatures. To create a
link between these two methods, we present lattice resolth@pressure at temperatures, which
were previously unreachable. It becomes possible to canpar data with perturbation theory
formulae. Our results are obtained using two different apghes: we present a new way to
renormalize the pressure (for this we have resultsNioe= 4), and a direct method to measure
the pressure (results fok = 4,6 and 8).

2. Renormalization of the pressure

For illustration, we present here the technique and thdteefur pure SU(3) gauge theory.
The extension to full QCD is straightforward.

In order to obtain results which can be extrapolated to tmimoum, one has to renormalize
the pressure. This is usually done using the standard aitewgthod [7]:

Prer(T) = P(T) = p(0) = [ dB((Phr — (Po) @)

This way one has to carry out simulations on finite and zergggature lattices. However, exactly
zero temperature cannot be realized. Together with thetfaat divergences that are removed by
renormalization are independent of the temperature, tigeguestion: why not use finitelattices
for renormalization? In order to do so, let us introduce thiWwing quantity:

PIT) = P(T) ~ P(T/2) = [ dB (P~ (Phzn) 22)

Here, instead of using/2 for the subtraction temperature, one can use any factachvidismaller
than 1. Now, we may build upren as a sum of differences, so it can be expressed pvith:

Pren(T) = P(T) = p(T/2) + p(T/2) = p(T/4) +... = p(T) + p(T/2) + ... (2.3)

In fact, we usually measure the dimensionless pressurehvweain be obtained by including tié
factors:
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Due to the increasing powers of 16 in the forthcoming terms, one practically needs only adéw
them. Applying this scheme, we may reach arbitrary high tnajpires using lattices with onhy
and 2 N temporal extent. It is worth mentioning, that a similar folencan be constructed for the
case of the normalized interaction measure (e — 3- p)/T*:

Tas i

lren(T) = 1(T) + 16I_(T/2)+... (2.5)
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where B
I(T) =N-dB/dloga- ((Phn — (P)2n)

The above method can also be easily generalized for the €dgaamical fermions.
We can demonstrate the applicability of this technique bggisnly the finite temperature
N; = 6 andN; = 8 data of [1] to reproduce their results obtained by the stethdhethod (which
uses the more expensiVe= 0 data). Here we will use the ratio= 6/8 instead of the previously
shown 7/2. We keep only four terms in the sum (2.3), since the forthiognterms are practically
negligible:
o

Pren 7 /_:? 12 &7

~7 =0T +x4 pIXT) +8- p(@T) +x12. pCT) (2.6)
On figure 1. we show the results obtained by the standard melization procedure, and also
those by our method.
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Figure 1. The dimensionless pressure as a function of the temperaByreumming up the intermediate
terms (indicated by solid blue lines, denoted iy we arrive at the total renormalized pressure (solid red
line), which agrees completely with results obtained byubeal integral method.

3. Setting the scale

Our new method is not only capable of reconstructing resflthe standard procedure, but
it also has a clear advantage over that, sifice O lattices are not needed for the subtraction,
only for scale determination. So we need large statistidg fum T > 0 simulations, which are
less demanding in terms of computer resources (memory, @©R).tIf we wanted to reach very
high temperatures, we still needed large, and thereforerestye zero temperature lattices to set the
scale. Alternatively, in the asymptotic scaling regiong omght determine the scale using improved
perturbation theory. To verify that we are indeed in the g#tytic scaling region, we compare
results of the Sommer parameter from [8], and a 3-loop inguigeerturbation theory formula [9]
inserted into the expression of the lattice spaang A~1(a — 0) finppr(B). This comparison on
figure 2 shows that the last few lattice simulation pointsimtbe asymptotic scaling regime, which
means that an extrapolation with the perturbative formulghtrbe trusted.
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Figure 2. Asymptotic scaling seems to be realized, as the improveaifation theory formula fits the
lattice results of the Sommer parameter for larger valugg of

4. Resultsl.

For our simulations we used tree level improved Symanziloactand an overrelaxation-
heatbath algorithm. The simulations were carried out dicéd with temporal exter; = 4; we
performed the subtraction d¥ = 8 lattices. In order to account for decreasing screeningess
we used a rather large aspect ratiocNgfN; = 8. On figure 3. we show our results on the pressure.
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Figure 3: We show the two, non-negligible terms (denoted by dottesk)iof the normalized pressure, and
their sum (solid line) Psg denotes the pressure of the non-interacting gluon gas.

It is worth mentioning here, that independently of the remalization procedure, a problem
emerges within the integral method framework. Since $grggeaking, the pressure is only exactly
zero afl =0, in principle we would have to carry out the integrationtatg from zero temperature.
Due to the uncertainty of setting the lower point of the inéégand also due to larger statistical
fluctuations in the low temperature regime, we needed abtinie€& more statistics for the region
belowTc, as we did forT = (1...100) - Tc.
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5. Direct approach

In the following, we will present a method, which is suitalide measuring the pressure di-
rectly, instead of integrating the difference of two, sapely measured plaquette variables. This
way we can get rid of the above mentioned lower point-relateckrtainty in the integral: we can
provide a reference point in the pressure.

Let us consider one single term of (2.3), namplgs defined by eq. (2.2):

p=

1 1 1 Z(N)?
NtN3IogZ(Nt) 2NtN3IOgZ(2Nt) 2MN3|09<Z(2M)> (5.1)

where we expressed the pressure aZlddow schematically we can draw the ratio of the two par-
tition functions like the following (le&y, be the action for the boundary condition in the numerator,

andSyy, for the one in the denominator):
2
72(N,) 1 I ;

o
Z(2Nt) ; ;

N,—2

Now let us take an interpolating partition functid_mor) = [9Uexp—(a - S+ (1—a) - Swp)),
which could be depicted like:
R
gy

UsingZ(a), one obtains

F~ log <§E2"N§> — log <%> :/Oldadloi / da(Sw—Sn)  (5.2)

So we can calculate the pressure itself at any given temperawithout carrying out simulations

at lower temperatures, and then performing an integral. é¥ew the cancellation of the plaquette
variables, which makes the former method a difficult taskp @merges in this new method. On
figure 4., we plot the integrand of (5.2) as a functiomnofo show why it is hard to calculate the
integral with a given precision.

Still, it is worth using this new method, since our integrdrede is proportional tdlZ, so it is
expected to scale with; > instead ofN, ™. This means that we gain a factor Mf with respect to
the standard method. In fact, we have to perform the integralfor each3 we need. However,
there is no need to worry about the lower part of the temperatiderval anymore, since using this
method we are able to set the integration constant in theyes

6. ResultslI.

The method discussed above gives us the possibility to medbka pressure at very high
temperatures. This was carried out using lattices with teaipextensiorN; = 4, N = 6 and
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Figure 4: Cancellation effect in calculating the pressure by our nesthmd. These results were obtained
onN; = 4 lattices af3 = 50 (which roughly corresponds to the Planck temperature).
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Figure5: The pressure, normalized to its Stefan-Boltzmann value fasction of the temperature obtained
by our new techique (blue circles). At the smallest tempeeatesult with the standard method [1] is also
plotted (blue box). The black dotted curve is an improvedyybation theory from [12].

Ny = 8. The temperature interval ranged from™ upto 3- 10" - Tc. Our results are shown on
figure 5. A comparison can be done with the standard methadelyahe result of [1] for smaller
temperatures. Here we present the results which are clwsést continuum limit, thus\; = 8.
These results nicely follow the perturtbative predictigsse [10, 11, 12], and also [13, 14]). At
lower temperatures they reproduce the the results obtainéte standard method. However, more
statistics is needed to determine the whole applicabiétyian of the perturbative approach. It is
important to point out, that at the highest temperature t§@n10’ - Tc), the pressure (within its
statistical uncertainty) is already consistent with thef&@t-Boltzmann limit.

7. Conclusion

We presented two new methods to determine the equation tef @ QCD. Compared to
previous techniques, these methods allow to extend thegiertyse range by orders of magnitude.
We developed a renormalization procedure of the pressareyliich noT = 0 simulations are
needed, and thus is less expensive than the methods, whielused previously. We also presented
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a new approach, which enables us to measure the pressurdyditdsing this approach we gain
a factor ofN; in CPU time with respect to the standard method. Our approanhalso be used to
set the integration constant, which provides a referencd fir the pressure. Based on these new
methods we presented first results on the pressure of thegauge theory at temperatures that
could not have been reached before.
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