
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
2
8

The equation of state at high temperatures from
lattice QCD
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1. Introduction

A difficulty emerging about the QCD equation of state is, thatperturbation theory does not
seem to fit lattice results even at higher temperatures (smaller couplings). While available lattice
results both for pure gauge theory [1, 2] and for full QCD [3, 4, 5] (and see also [6]) end at around
5 ·TC, standard perturbation theory converges only at extremelyhigh temperatures. To create a
link between these two methods, we present lattice results on the pressure at temperatures, which
were previously unreachable. It becomes possible to compare our data with perturbation theory
formulae. Our results are obtained using two different approaches: we present a new way to
renormalize the pressure (for this we have results forNt = 4), and a direct method to measure
the pressure (results forNt = 4,6 and 8).

2. Renormalization of the pressure

For illustration, we present here the technique and the results for pure SU(3) gauge theory.
The extension to full QCD is straightforward.

In order to obtain results which can be extrapolated to the continuum, one has to renormalize
the pressure. This is usually done using the standard integral method [7]:

pren(T) = p(T)− p(0) =

∫

dβ (〈Pl〉T −〈Pl〉0) (2.1)

This way one has to carry out simulations on finite and zero temperature lattices. However, exactly
zero temperature cannot be realized. Together with the fact, that divergences that are removed by
renormalization are independent of the temperature, risesthe question: why not use finiteT lattices
for renormalization? In order to do so, let us introduce the following quantity:

p̄(T) = p(T)− p(T/2) =
∫

dβ (〈Pl〉Nt −〈Pl〉2·Nt ) (2.2)

Here, instead of using 1/2 for the subtraction temperature, one can use any factor, which is smaller
than 1. Now, we may build uppren as a sum of differences, so it can be expressed with ¯p as:

pren(T) = p(T)− p(T/2)+ p(T/2)− p(T/4)+ . . . = p̄(T)+ p̄(T/2)+ . . . (2.3)

In fact, we usually measure the dimensionless pressure, which can be obtained by including theT4

factors:

pren

T4 =
p̄

T4

∣
∣
∣
∣
T

+
1
16

·
p̄

T4

∣
∣
∣
∣
T/2

+
1

256
· . . . (2.4)

Due to the increasing powers of 1/16 in the forthcoming terms, one practically needs only a fewof
them. Applying this scheme, we may reach arbitrary high temperatures using lattices with onlyNt

and 2·Nt temporal extent. It is worth mentioning, that a similar formula can be constructed for the
case of the normalized interaction measureI ≡ (ε −3· p)/T4:

Iren(T) = Ī(T)+
1
16

Ī(T/2)+ . . . (2.5)
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where
Ī(T) = N4

t ·dβ/d loga· (〈Pl〉Nt −〈Pl〉2·Nt )

The above method can also be easily generalized for the case of dynamical fermions.
We can demonstrate the applicability of this technique by using only the finite temperature

Nt = 6 andNt = 8 data of [1] to reproduce their results obtained by the standard method (which
uses the more expensiveT = 0 data). Here we will use the ratiox = 6/8 instead of the previously
shown 1/2. We keep only four terms in the sum (2.3), since the forthcoming terms are practically
negligible:

pren

T4 = p̄(T)+x4 · p̄(xT)+

p′
︷ ︸︸ ︷

x8 · p̄(x2T)+x12 · p̄(x3T) (2.6)

On figure 1. we show the results obtained by the standard renormalization procedure, and also
those by our method.

Figure 1: The dimensionless pressure as a function of the temperature. By summing up the intermediate
terms (indicated by solid blue lines, denoted byp′) we arrive at the total renormalized pressure (solid red
line), which agrees completely with results obtained by theusual integral method.

3. Setting the scale

Our new method is not only capable of reconstructing resultsof the standard procedure, but
it also has a clear advantage over that, sinceT = 0 lattices are not needed for the subtraction,
only for scale determination. So we need large statistics only for T > 0 simulations, which are
less demanding in terms of computer resources (memory, CPU time). If we wanted to reach very
high temperatures, we still needed large, and therefore expensive zero temperature lattices to set the
scale. Alternatively, in the asymptotic scaling region, one might determine the scale using improved
perturbation theory. To verify that we are indeed in the asymptotic scaling region, we compare
results of the Sommer parameter from [8], and a 3-loop improved perturbation theory formula [9]
inserted into the expression of the lattice spacinga = Λ−1(a→ 0) fimpPT(β ). This comparison on
figure 2 shows that the last few lattice simulation points arein the asymptotic scaling regime, which
means that an extrapolation with the perturbative formula might be trusted.
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Figure 2: Asymptotic scaling seems to be realized, as the improved perturbation theory formula fits the
lattice results of the Sommer parameter for larger values ofβ .

4. Results I.

For our simulations we used tree level improved Symanzik action, and an overrelaxation-
heatbath algorithm. The simulations were carried out on lattices with temporal extentNt = 4; we
performed the subtraction onNt = 8 lattices. In order to account for decreasing screening masses,
we used a rather large aspect ratio ofNs/Nt = 8. On figure 3. we show our results on the pressure.

Figure 3: We show the two, non-negligible terms (denoted by dotted lines) of the normalized pressure, and
their sum (solid line).PSB denotes the pressure of the non-interacting gluon gas.

It is worth mentioning here, that independently of the renormalization procedure, a problem
emerges within the integral method framework. Since strictly speaking, the pressure is only exactly
zero atT = 0, in principle we would have to carry out the integration starting from zero temperature.
Due to the uncertainty of setting the lower point of the integral, and also due to larger statistical
fluctuations in the low temperature regime, we needed about 6times more statistics for the region
belowTC, as we did forT = (1. . .100) ·TC.
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5. Direct approach

In the following, we will present a method, which is suitablefor measuring the pressure di-
rectly, instead of integrating the difference of two, separately measured plaquette variables. This
way we can get rid of the above mentioned lower point-relateduncertainty in the integral: we can
provide a reference point in the pressure.

Let us consider one single term of (2.3), namely ¯p as defined by eq. (2.2):

p̄ =
1

NtN3
s

logZ(Nt)−
1

2NtN3
s

logZ(2Nt) =
1

2NtN3
s

log

(
Z(Nt)

2

Z(2Nt)

)

(5.1)

where we expressed the pressure as logZ. Now schematically we can draw the ratio of the two par-
tition functions like the following (letS2b be the action for the boundary condition in the numerator,
andS1b for the one in the denominator):

Now let us take an interpolating partition function̄Z(α) =
∫

DUexp(−(α ·S2b + (1−α) ·S1b)),
which could be depicted like:

UsingZ̄(α), one obtains

p̄∼ log

(
Z(Nt)

2

Z(2Nt)

)

= log

(
Z̄(1)

Z̄(0)

)

=

∫ 1

0
dα

d logZ̄(α)

dα
=

∫ 1

0
dα〈S1b−S2b〉 (5.2)

So we can calculate the pressure itself at any given temperature, without carrying out simulations
at lower temperatures, and then performing an integral. However, the cancellation of the plaquette
variables, which makes the former method a difficult task, also emerges in this new method. On
figure 4., we plot the integrand of (5.2) as a function ofα to show why it is hard to calculate the
integral with a given precision.

Still, it is worth using this new method, since our integrandhere is proportional toN3
s , so it is

expected to scale withN−3
t instead ofN−4

t . This means that we gain a factor ofNt with respect to
the standard method. In fact, we have to perform the integralin α for eachβ we need. However,
there is no need to worry about the lower part of the temperature interval anymore, since using this
method we are able to set the integration constant in the pressure.

6. Results II.

The method discussed above gives us the possibility to measure the pressure at very high
temperatures. This was carried out using lattices with temporal extensionNt = 4, Nt = 6 and

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
2
8

The equation of state at high temperatures from lattice QCD K.K. Szabó

Figure 4: Cancellation effect in calculating the pressure by our new method. These results were obtained
onNt = 4 lattices atβ = 50 (which roughly corresponds to the Planck temperature).

Figure 5: The pressure, normalized to its Stefan-Boltzmann value, asa function of the temperature obtained
by our new techique (blue circles). At the smallest temperature result with the standard method [1] is also
plotted (blue box). The black dotted curve is an improved perturbation theory from [12].

Nt = 8. The temperature interval ranged from 4·TC upto 3· 107 ·TC. Our results are shown on
figure 5. A comparison can be done with the standard method, namely the result of [1] for smaller
temperatures. Here we present the results which are closestto the continuum limit, thusNt = 8.
These results nicely follow the perturtbative predictions(see [10, 11, 12], and also [13, 14]). At
lower temperatures they reproduce the the results obtainedby the standard method. However, more
statistics is needed to determine the whole applicability region of the perturbative approach. It is
important to point out, that at the highest temperature point (3 ·107 ·TC), the pressure (within its
statistical uncertainty) is already consistent with the Stefan-Boltzmann limit.

7. Conclusion

We presented two new methods to determine the equation of state for QCD. Compared to
previous techniques, these methods allow to extend the temperature range by orders of magnitude.
We developed a renormalization procedure of the pressure, for which noT = 0 simulations are
needed, and thus is less expensive than the methods, which were used previously. We also presented
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a new approach, which enables us to measure the pressure directly. Using this approach we gain
a factor ofNt in CPU time with respect to the standard method. Our approachcan also be used to
set the integration constant, which provides a reference point for the pressure. Based on these new
methods we presented first results on the pressure of the puregauge theory at temperatures that
could not have been reached before.
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