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1. Introduction

Over many years, lattice QCD simulations have been donelyrainzero and two flavors of
fermions because of the algorithmic difficulty of simulatiodd flavors. Recently, though, several
algorithms have been developed for odd-flavor simulatiohsiew comer is the rational hybrid
Monte Carlo algorithm (RHMC) in which a fractional power dfet fermion matrix needed to
simulate odd fermions is given by a rational approximatignf he advantage of the RHMC is that
the approximation error can be made small with a low appration degree.

One-flavor QCD had not been seriously studied. However vaiteiil by theoretically interest-
ing properties ( one-flavor QCD has no pion and is expectedve ho chiral symmetry ) a study
of the one-flavor spectroscopy has now been started[2].

One-flavor QCD at finite temperature was studied some timf8adp Alexandrouwet al. used
the multi-boson algorithm to simulate one-flavor QCD and peaha rough phase diagram of the
one-flavor QCD in the heavy quark region. In order to locateghd-point accurately, they also
used the effective 3D Potts model and estimaied 0.08[3].

In this study we use the RHMC to simulate one-flavor QCD andatgcate the end-point by
the Binder cumulant of the Polyakov loop norm.

2. One-flavor algorithms

The lattice QCD patrtition function is given by
Z= /[dU]detD(U)”fe‘S@(U), (2.1)

whereD(U) is the fermion matrixn; the number of flavors an§,(U ) the gauge action. We use
the standard Wilson fermion and the standard Wilson gaudgmadVith this partition function the
expectation value of an operat@ris given by

Q) = % / [dU]Q[U] detD(U)" e SY), 2.2)

For multiples of even-flavor the fermionic determinant (enoar 2 flavors as an example ) is ex-
pressed as

detD'D = /D(pTD(pe-WD*D)’lq’: /D(pTD(pe_”T”, (2.3)

wheren = DT*lq). The key ingredient of the conventional hybrid Monte CaHC)[5] is that
the fermionic actionS; = @' (D'D) ¢ is manifestly positive. This positive form of the action can
not be easily realized for odd-flavors. For this positiverfiemic action one can easily updage
using the heat-bath method, i@= D', wheren is drawn byP(n) ~ en'n,

If we use the identity of d®" = n;trlogD we can make simulations of any numbers of
flavors using the R-algorithm[6] which is, however, an ineb@gorithm introducing errors to the
results. When we calculate the fermionic forces in the Rudtlgm, the calculations df (D1D’)
appear. Such calculations are numerically very costly audlly they are estimated approximately
using the random noise method, which introduces the apmiation errors. These errors can not
be removed completely. The order of the error®{®t?), wheredt is the step-size. In order to
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obtain the exact results from the R-algorithm, one needstragolate them to the zero step-size
limit, i.e. ot — O.

The exact algorithms of odd flavors can be constructed usirsgher’s idea[7]. He approxi-
mates the inverse of the fermion matrix using the followinypomial.

1

5 ~MLi(D-2), (2.4)
wherez are the roots of the polynomial. With this polynomial a mibitison algorithm which
is algorithmically very different from the HMC can be consgtted. Originally it was applied for
even flavors and later generalized to any numbers of flavo®8$[8Jsing theys hermiticity of D,
D = D'y, the determinant of a sing[® for n¢ = 1 is written as

detD =~ deanT/z(D)Tn/Z(D)]_l’ (2'5)

0 /I'Ii”ﬁD(,qTD(,qe_zrﬁqT(D_z)T(D_mm, (2.6)
SN2t

- [nipgioge i, @7)

whereT, »(D) = I'Ii”:/i(D—z) andn; = (D—z)@. Each bosonic actiog' (D—2z)"(D—2z)q is

now positive andy are updated using the heat-bath method.

The same idea of using the polynomial can also be used in @heefvork of the HMC algo-
rithm. de Forcrand and Takaishi first used Lischer’s polyiabfor the HMC in order to reduce
the computational cost of the algorithm[10]. With the helph® polynomial, an odd-flavor HMC
algorithm is constructed[11] as follows. Using tigehermiticity of D, the determinant oD is
written as

detD ~ defT,,(D)Ty2(D)] %, (2.8)
0 /D(p'rD(pe*‘I’T[TnJr/z(D)Tn/z(D)](P7 (29)
_ /D(pTD(pe*”T”, (2.10)

whereT, »(D) = I‘Ii”:/i(D —z) andn =T,;»(D)g. Thus, as in the conventional HMC algorithm,

the fermionic actior; = (pT[TnT/Z(D)Tn/Z(D)](p is made to be positive angl is updated using the
heat-bath method.

Lischer’s polynomial is not nessesarily the optimal onetdad, one can find a rational ap-
proximation with more accuracy. Clark and Kennedy conseadithe HMC algorithm with a ratio-
nal approximation[1], which will be described briefly in thext section.

3. Rational Hybrid Monte Carlo
In the RHMC the fermion determinant is rewritten as

etM? 0 [ De'Dpe ®™ Y= [ Dep'Dgpe n? 3.1
detM® t '™ g T o'r(M)3e
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Figure 1: The relative error as a function of the approximation degree
wherea = n; /2, M = (D'D) and the rational approximatian(M) ! is given by
(M) =gt (3.2)
= 0 . .
" i; (M - BI)

In this way, the fermionic actio; = @'rn(M)?@ is made to be positive. Thus the framework of
the HMC algorithm can be used with this approximation.

The operations such aéV), *n including(M — ) ~*n can be done by the multi-shift solver[12].
The computational cost of this operation is expected toindagi to the HMC[1].

The coefficients of the rational approximation are numdicalculated by the Remez method[13].
The rational approximation error can be made small with esing orden. Typically, O(20) or
less gives the maximum relative error that is good to maghiaeision[1]. Fig.1 shows an example
of the relative errors calculated on®204 lattices. We calculate,(M) to—r, . (M) @|?/|r,.. (M) 1@
as a function oh. Here@ is random gaussian noise vectors apgxis set to 60. The results shown
on Fig.1 are averages taken over 10 configuratiorf3-at5.63 andk = 0.12. The error bars are
smaller than the symbols. We see that with increasitige relative error decreases quickly. The
relative error withn = 20 is already very small, less than 8. For our simulations we take= 20
or 25( for the largest lattice 20< 4).

Here, note that the low approximation degree itself doesma#n that the cost of the RHMC
is small. The rational approximation in the RHMC containt/eocalculations such aB~1¢.
Roughly speaking the cost of the RHMC is proportional to thfahe solver calculations. On the
other hand, in the polynomial HMC the calculation®f@ is replaced with the calculation by the
polynomial approximation. Therefore, the cost of the polyal HMC is directly proportional to
the number of the approximation degree.

Fig.2 shows the plaquette values obtained from= 1 simulations on a 6lattice atf =
5.45 andk = 0.160 as a function of the approximation degree. The resuta the RHMC are
consistent with those from the R-algorithm and the polyr@riMC unless the approximation
degree is very small, lika ~ 5.
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Figure 2: Plaquette values calculated on‘al8itice atB = 5.45 andk = 0.16 as a function of the approxi-
mation degree. The results from the polynomial HMC and tred®rithm are taken from [11].

4. One-flavor simulations

We simulated one-flavor QCD dr? x 4 lattices withL = 8,12,16 and 20. We used an im-
proved integrator, 2MN integrator, for molecular dynansanulations in the RHMC. The 2MN
integrator is 50% faster than the conventional 2nd ordgr feag integrator[14]. The step-sizes
are set to the values that give acceptances from 60% to 70%seTdcceptances are shown to be
optimal for any 2nd order integrator[15]. We generated 4Boul0® (1 x 10°) trajectories for L=8
(12~ 20).

Fig.3 shows the Polyakov loop norm for eaghas a function of. At large k we see no
evidence that on larger lattices the discontinuity acf@ssill be pronounced. On the other hand,
at smallk the discontinuity appears for larger lattices, which magvstevidence of first order
phase transition.

We calculate the Binder cumulaBj defined by

4
By = % (4.1)
B, takes 3 or 1 for the first order phase transition or cross@ughe critical pointB, takes a certain
value dependent on the universality class. For 3d IsingaugalityB, is 1.604[16]. Fig.4 showB,
for the Polyakov loop norm as a function of The results are still noisy and the clear critical point
where all curves intersect is not determined yet. Howeveestinate it to be. = 0.07 ~ 0.08.

5. Summary

The one-flavor QCD simulations are done by the RHMC. The ivelarror of the rational
approximation can be made small using a low approximatigmedesuch am ~ 20. We compare
the plaquette results from the RHMC with those from the poiyial HMC and the R-algorithm.
The results are consistent with those from the polynomialGiand the R-algorithm.



Simulations of one-flavor QCD at finite temperature by RHMC Tetsuya Takaishi

02— - 0.2
=08 k=0.05
0.15 0.15
& 0.1 &g 0.1
0.05 5= 0.05
i O | | | | |
9 564 566 568 57 572 5
B
0.2 0.2
0.15 0.15-
g 0.1 g 01
0.05 0.05-
N | N | N | N | N | | L | N | N | N
62 564 566 [35.68 57 572 0562 564 566 568 57
B

Figure 3: Polyakov loop norm for different lattice sizes as a functidif.
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Figure 4: Binder cumulant of the Polyakov loop norm for various latgizes as a function &df.
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We calculate the Binder cumulaBy of the Polyakov loop norm oh® x 4 lattices withL =
8,12,16 and 20. Thd, curves are expected to intersect at the critical pginand we estimate
roughly k. ~ 0.07—0.08.

In future in order to locate the end-point accurately we plamuse a larger lattice and to
improve our data statistics.
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