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1. Introduction

Recently, we made an attempt to properly define a static patém finite-temperature QCD,

in the sense of obtaining an object which has a direct coioretd the spectral function of the
heavy quarkonium system [1]. The spectral function is eglab a mesonic correlator obeying
a Schrodinger equation in real (Minkowski) time, and theregponding potential was therefore
introduced as theeal-time static potentialFurthermore, employing resummed perturbation theory,
the real-time static potential was shown to develop an imagi part, which induces a thermal
width for the tip of the quarkonium peak observed in the spédunction [2]. In a subsequent
work [3], we investigated the extent to which there might loa-perturbative corrections to the
imaginary part, utilising classical real-time latticelta@mues. The purpose of the current note is to
review the results of ref. [3], and also to elaborate on oudH&ermal Loop improved simulations
in some more detail than in ref. [3].

2. Real-time static potential

The heavy quarkonium spectral function in the vector chlnmev), can be obtained using

the relation 1

p(w)=5(1-e¥) /_idt d9C_(1,0) 2.1)

whereC. (t,0) is the mesonic correlator

(1) /d3 (tx+5 )yﬂwLp(tx——)Lﬁ(o,O)y“Lp(o,0)>. 2.2)

Here a point-splitting has been introduced to facilitatecetyrbative treatment, any denotes a
Wilson line connecting the adjacent operators along agtitgiath. The dilepton production rate
from gg-annihilation in a quark-gluon plasma is proportional te thus defined spectral function.

Focusing on infinitely heavy quarks, the correlator can kaiobd, up to normalization and a
trivial phase factor, from the analytic continuation of i@ean Wilson loop [1],

C.(t,r) OCg(it,r),
1
Ce(t,r) = WTr (W(O,r; T,r)W(t,r;7,00W(1,0;0,00W(0,0;0,1)) . (2.3)
C
At t = 0 we can write the time evolution in the form of a Schrodingguagion,
[idl_v>(t7r)]c>(t7r):07 rE’r‘ ’ (24)

which defines the objest. we refer to as theeal-time static potential
The simplest estimate faf. comes from perturbation theory. An analytic computatiothwi
proper account taken of HTL-resummation yields the follogviesult in the large-time limit [1]:

ZC _ '2T
with _2 / szjzl { Sinz()fx)}. (2.5)
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Figurel: The resummed perturbative quarkonium contributdrdenotes the heavy quark pole mass) to
the spectral function of the electromagnetic current, érbn-relativistic regiméw — 2M)/M < 1 [2].

The real part corresponds to the standard Debye-screemedtipbof a static quark—antiquark pair
at finite temperature. The Debye mass is denotednby The imaginary part of the potential
controls the damping of the correla©k (t,r ), which obeys the Schrédinger equation (2.4).

The spectral function can now be obtained by inserting ticgtotential into the Schrédinger
equation, eq. (2.4), supplemented by the usual mass terrspatil derivatives, and employing
subsequently eq. (2.1). The result is shown in fig. 1. The inzag part of the potential, encoding
the Landau damping of the off-shell gluons binding the twavyequarks together, introduces a
thermal width to the tip of the quarkonium peak.

As a next step, we would like to estimate (o, r) beyond perturbation theory. (In principle,
p(w) could be extracted from lattice Monte Carlo simulations bgams of maximum-entropy
and related methods; in practice, this involves many stiktleand, possibly, unknown systematic
errors. For the current status see, e.g., refs. [4].) A remtupbative calculation o¥/- (co,r) is
complicated by the fact that a direct analytic continuafimm numerical data fo€g(7,r) is not
feasible. It turns out, however, that the imaginary pai-ofs formally classical [1], and can hence
be probed non-perturbatively with classical lattice gatig®ry simulations, of the type originally
introduced by Grigoriev and Rubakov [5].

3. Classical lattice gauge theory simulations

We start our discussion of the real-time lattice technigmeitroducing the framework for
classical lattice gauge theory simulations [5], which igeygimilar to the Kogut-Susskind Hamil-
tonian approach [6]:

e The fields are discretized using a 3-dimensional spatittéatThe time coordinate remains
continuous.

¢ Besides the spatial linkd;, corresponding to the discretized colour-magnetic fieddsglec-
tric field E; is defined via the relatiob; (x) = iE;(x)U; (), wherex = (t,x) andU = dU /dt.
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e A temporal gauge is chosen. The space of physical statesistramed to gauge field con-
figurations satisfying the discretized Gauss law,

G(x) = [Ei(x) —P-i(x)E(x—1)] = j°(0) =0, (3.1)

|
with j denoting a possible colour current, a@Rdhe adjoint parallel transporte®,@(x+ f) =
Ui (9 @(x+ U (%).

The classical approximation for Yang-Mills fields at finientperature follows by supple-
menting the phase space just introduced with a canonicaldirolution and an average over initial
conditions with a thermal weight. The weight correspondsh one in the classical partition
function,

1 1
Z- /gui 7ES@)e M, H=Y|TReT(1-U)+,TrE)|,  (32)
C X Li<]
whereU;; is the plaquette. The classical equations of motion for tiseretized system can be
obtained by invoking the Hamiltonian principfS = 0, and read [TfT2TP) = 52°/2] [7]:

Ui =IEi(Ui(x), Ei=SET?, EXx) =-2ImTr[T* S Uj;(x)]. (3.3)
a [

A more thorough treatment of the long-range dynamics of h6DQs possible using the
so-called Hard Thermal Loop (HTL) effective theory [8], whiis obtained by integrating out the
“hard modes” (with momenta of the order of the temperatu@hfthe system, in order to construct
an effective theory for the soft modes. To keep the effedtie®ry local, certain on-shell particle
degrees of freedom need, however, to be added to the effddtimiltonian [9]. Once this system
is discretized and the classical limit is taken, the praperof the hard modes change, and the
associated matching coefficient, denotednify needs to be tuned correspondingly [10]. In the
following we denote the new on-shell particle modesgx,v). In a numerical implementation
the following changes are introduced with respect to thesital setup:

1. The Hamiltonian obtains an additional part,

OH = Nic Z { % :—ZL(amD)ZTr W2)| | (3.4)

whereW = T2W?(x,v) describes the charge density of the on-shell modrsraiving in the
directionv = (1,v).

2. The velocitiesy need to be discretised. This can be done, for instance, pitarkal har-
monics [11] or with platonic solids [12]. Choosing the latepproach, we can replace
JdQy/4mf(v) — 1/Np z,':'il f(vn), whereN, is the number of vertices of the polyhedron
used. The equation of motion of the gauge fields then acqthieesource term

Np
j(x) = (amg)zNiIO > VWh(X),  Wa(X) =W(X, V) - (3.5)
n=1
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Figure 2: Measurement of the correlatBg (t,r) [3]. The corresponding potential is shown in fig. 3.

3. Finally, the new fields also evolve in time, according @ fibllowing equation of motion:
A i — 1 Ea Ea
Vi (%) =V, (Ei (00— 2 [PV ) — P u)]) , (3.6)

whereE; (x) = [Ei(X) + P_iEi(x—1)]/2.

For the purely classical simulations, the required set ifalnconfigurations distributed ac-
cording to the statistical weight in eq. (3.2) and respectire Gauss constraint was created using
the following algorithm:

1. Pre-generate the spatial gauge libksvith a Monte Carlo simulation of the dimensionally
reduced effective theory [13].

2. Generate the electric fields from a gaussian distribJtibreq. (3.2)].
3. Project onto the space of physical configurations, satigfthe Gauss law [11].
4. Evolve the fields using the EOM, and repeat from step 2| tintifields have thermalized.

In the HTL-improved case there are minor changes, but treneesf the procedure is the same.

4. Theimaginary part of thereal-time static potential from Wilson loop dynamics

To obtain the imaginary part of the real-time static potnta rectangular Wilson loop of
spatial extent = |r| and temporal exteritwas measured using classical or HTL-improved simu-
lations. The measured average over a statistical enserhisligia configurations, as well as over
lattice sites and loop orientations, is denoteddgyt,r) (a typical result is shown in fig. 2). The
real-time static potential can then be calculated from 2d)(

idtcd(t,r)

VC|(t,I’) = Cd(t,r)

L Galtn) = W OW0) (4.1)

with W, (t) denoting a spatial Wilson line of length Timelike Wilson lines have disappeared due
to the use of temporal gauge. The result\gft, r) is purely imaginary, and is shown in fig. 3.
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Figure 3: The imaginary part of the real-time static potential frtve classical simulation (left panel)
and from resummed perturbation theory (right panel) [3].

B N | amp | confs| r=1a r=2a r=3a r=4a
Simulation| 16.0| 12 | 0.0 200 | -0.060(2)| -0.156(8) | -0.246(26)| -0.319(56)
16.0| 16 | 0.0 160 | -0.059(2)| -0.155(8) | -0.245(22)| -0.326(48)
16.0| 12 | 0.211| 200 | -0.059(2)| -0.147(7) | -0.229(23)| -0.297(51)
16.0| 12 | 0.350| 182 | -0.030(2)| -0.064(5) | -0.096(12)| -0.118(21)
13.5| 12| 0.250| 142 | -0.071(2)| -0.174(10)| -0.270(33)| -0.341(97)

Analytic | 16.0[ o | 0.0 | | -0.0601 | -0.1145 | -0.1507 | -0.1737 |

Table 1: Overview of the results in the large-time limit [3]. Thestéts from the classical and HTL-
improved simulations agree within error bars on, < 0.25 (atf3 = 16).

As seen in fig. 3, the predictions from resummed perturbati@ory and from the classical
numerical simulations are remarkably similar. At the saimetsome amplification of the imagi-
nary part through the inclusion of non-perturbative (arghbr-order perturbative) effects is visible
in the simulation. The difference between the two resultobrees more pronounced at later times.
In particular, in the large-time limit, a difference betwabe perturbative and the numerical results

of up to~ 100% can be observed (@t= 16), cf. table 1.

5. Conclusions

The results from the real-time lattice simulations confitra existence of an imaginary part
in the real-time static potential, indicated already bylleg-order Hard Thermal Loop resummed
perturbation theory. In fact, non-perturbative and higbreler perturbative correctiormnplify the
imaginary part, by up te- 100%. The amplified imaginary part widens (and lowers) tharkpr
nium peak in fig. 1, although the qualitative structure rammainchanged. As a side remark, we
note that the existence of an imaginary part also leads tmgtdamping in the solution of the
Schrddinger equation in eq. (2.4), thus significantly featihg the numerical determination of the

spectral function through eq. (2.1).
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