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1. Introduction

Recently, we made an attempt to properly define a static potential in finite-temperature QCD,
in the sense of obtaining an object which has a direct connection to the spectral function of the
heavy quarkonium system [1]. The spectral function is related to a mesonic correlator obeying
a Schrödinger equation in real (Minkowski) time, and the corresponding potential was therefore
introduced as thereal-time static potential. Furthermore, employing resummed perturbation theory,
the real-time static potential was shown to develop an imaginary part, which induces a thermal
width for the tip of the quarkonium peak observed in the spectral function [2]. In a subsequent
work [3], we investigated the extent to which there might be non-perturbative corrections to the
imaginary part, utilising classical real-time lattice techniques. The purpose of the current note is to
review the results of ref. [3], and also to elaborate on our Hard Thermal Loop improved simulations
in some more detail than in ref. [3].

2. Real-time static potential

The heavy quarkonium spectral function in the vector channel, ρ(ω), can be obtained using
the relation

ρ(ω) =
1
2

(

1−e−
ω
T

)

∫ ∞

−∞
dt eiωtC>(t,0) , (2.1)

whereC>(t,0) is the mesonic correlator

C>(t,r) ≡
∫

d3x
〈

ˆ̄ψ
(

t,x+
r
2

)

γµ W ψ̂
(

t,x−
r
2

)

ˆ̄ψ (0,0)γµ ψ̂(0,0)
〉

. (2.2)

Here a point-splitting has been introduced to facilitate a perturbative treatment, andW denotes a
Wilson line connecting the adjacent operators along a straight path. The dilepton production rate
from qq̄-annihilation in a quark-gluon plasma is proportional to the thus defined spectral function.

Focusing on infinitely heavy quarks, the correlator can be obtained, up to normalization and a
trivial phase factor, from the analytic continuation of a euclidean Wilson loop [1],

C>(t,r) ∝ CE(it ,r),

CE(τ ,r) =
1
Nc

Tr 〈W(0,r;τ ,r)W(τ ,r;τ ,0)W(τ ,0;0,0)W(0,0;0,r)〉 . (2.3)

At t 6= 0 we can write the time evolution in the form of a Schrödinger equation,

[i∂t −V>(t, r)]C>(t,r) = 0 , r ≡ |r| , (2.4)

which defines the objectV> we refer to as thereal-time static potential.
The simplest estimate forV> comes from perturbation theory. An analytic computation with

proper account taken of HTL-resummation yields the following result in the large-time limit [1]:

V>(∞, r) = −
g2CF

4π

[

mD +
exp(−mDr)

r

]

−
ig2TCF

4π
φ(mDr) ,

with φ(x) = 2
∫ ∞

0

dzz
(z2 +1)2

[

1−
sin(zx)

zx

]

. (2.5)
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Figure 1: The resummed perturbative quarkonium contribution (M denotes the heavy quark pole mass) to
the spectral function of the electromagnetic current, in the non-relativistic regime(ω −2M)/M � 1 [2].

The real part corresponds to the standard Debye-screened potential of a static quark–antiquark pair
at finite temperature. The Debye mass is denoted bymD. The imaginary part of the potential
controls the damping of the correlatorC>(t,r), which obeys the Schrödinger equation (2.4).

The spectral function can now be obtained by inserting the static potential into the Schrödinger
equation, eq. (2.4), supplemented by the usual mass term andspatial derivatives, and employing
subsequently eq. (2.1). The result is shown in fig. 1. The imaginary part of the potential, encoding
the Landau damping of the off-shell gluons binding the two heavy quarks together, introduces a
thermal width to the tip of the quarkonium peak.

As a next step, we would like to estimateV>(∞, r) beyond perturbation theory. (In principle,
ρ(ω) could be extracted from lattice Monte Carlo simulations by means of maximum-entropy
and related methods; in practice, this involves many subtleties and, possibly, unknown systematic
errors. For the current status see, e.g., refs. [4].) A non-perturbative calculation ofV>(∞, r) is
complicated by the fact that a direct analytic continuationfrom numerical data forCE(τ ,r) is not
feasible. It turns out, however, that the imaginary part ofV> is formally classical [1], and can hence
be probed non-perturbatively with classical lattice gaugetheory simulations, of the type originally
introduced by Grigoriev and Rubakov [5].

3. Classical lattice gauge theory simulations

We start our discussion of the real-time lattice techniquesby introducing the framework for
classical lattice gauge theory simulations [5], which is quite similar to the Kogut-Susskind Hamil-
tonian approach [6]:

• The fields are discretized using a 3-dimensional spatial lattice. The time coordinate remains
continuous.

• Besides the spatial linksUi, corresponding to the discretized colour-magnetic fields,an elec-
tric field Ei is defined via the relatioṅUi(x) = iEi(x)Ui(x), wherex≡ (t,x) andU̇ ≡ ∂U/∂ t.
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• A temporal gauge is chosen. The space of physical states is constrained to gauge field con-
figurations satisfying the discretized Gauss law,

G(x) ≡∑
i

[

Ei(x)−P−i(x)Ei(x− î)
]

− j0(x) ≡ 0 , (3.1)

with j denoting a possible colour current, andPi the adjoint parallel transporter,Piφ(x+ î) =

Ui(x)φ(x+ î)U†
i (x).

The classical approximation for Yang-Mills fields at finite temperature follows by supple-
menting the phase space just introduced with a canonical time evolution and an average over initial
conditions with a thermal weight. The weight corresponds tothe one in the classical partition
function,

Z =

∫

DUi DEi δ (G)e−βH , H =
1
Nc

∑
x

[

∑
i< j

ReTr(1−Ui j )+
1
2

Tr(E2
i )

]

, (3.2)

whereUi j is the plaquette. The classical equations of motion for the discretized system can be
obtained by invoking the Hamiltonian principleδS= 0, and read [Tr(TaTb) = δ ab/2] [7]:

U̇i(x) = iEi(x)Ui(x) , Ei = ∑
a

Ea
i Ta , Ėa

i (x) = −2ImTr[Ta ∑
| j|6=i

Ui j (x)] . (3.3)

A more thorough treatment of the long-range dynamics of hot QCD is possible using the
so-called Hard Thermal Loop (HTL) effective theory [8], which is obtained by integrating out the
“hard modes” (with momenta of the order of the temperature) from the system, in order to construct
an effective theory for the soft modes. To keep the effectivetheory local, certain on-shell particle
degrees of freedom need, however, to be added to the effective Hamiltonian [9]. Once this system
is discretized and the classical limit is taken, the properties of the hard modes change, and the
associated matching coefficient, denoted bym2

D, needs to be tuned correspondingly [10]. In the
following we denote the new on-shell particle modes byW(x,v). In a numerical implementation
the following changes are introduced with respect to the classical setup:

1. The Hamiltonian obtains an additional part,

δH =
1
Nc

∑
x

[

∫

dΩv

4π
1
2
(amD)

2Tr(W2)

]

, (3.4)

whereW ≡ TaWa(x,v) describes the charge density of the on-shell modes atx moving in the
directionv = (1,v).

2. The velocitiesv need to be discretised. This can be done, for instance, with spherical har-
monics [11] or with platonic solids [12]. Choosing the latter approach, we can replace
∫

dΩv/4π f (v) → 1/Np ∑Np

n=1 f (vn), whereNp is the number of vertices of the polyhedron
used. The equation of motion of the gauge fields then acquiresthe source term

j (x) = (amD)
2 1
Np

Np

∑
n=1

vnWn(x) , Wn(x) ≡W(x,vn) . (3.5)
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Figure 2: Measurement of the correlatorCcl(t, r) [3]. The corresponding potential is shown in fig. 3.

3. Finally, the new fields also evolve in time, according to the following equation of motion:

Ẇn(x) = vi
n

(

Ēi(x)−
1
2

[

PiWn(x+ î)−P−iWn(x− î)
]

)

, (3.6)

whereĒi(x) ≡ [Ei(x)+P−iEi(x− î)]/2.

For the purely classical simulations, the required set of initial configurations distributed ac-
cording to the statistical weight in eq. (3.2) and respecting the Gauss constraint was created using
the following algorithm:

1. Pre-generate the spatial gauge linksUi with a Monte Carlo simulation of the dimensionally
reduced effective theory [13].

2. Generate the electric fields from a gaussian distribution[cf. eq. (3.2)].

3. Project onto the space of physical configurations, satisfying the Gauss law [11].

4. Evolve the fields using the EOM, and repeat from step 2, until the fields have thermalized.

In the HTL-improved case there are minor changes, but the essence of the procedure is the same.

4. The imaginary part of the real-time static potential from Wilson loop dynamics

To obtain the imaginary part of the real-time static potential, a rectangular Wilson loop of
spatial extentr = |r| and temporal extentt was measured using classical or HTL-improved simu-
lations. The measured average over a statistical ensemble of initial configurations, as well as over
lattice sites and loop orientations, is denoted byCcl(t, r) (a typical result is shown in fig. 2). The
real-time static potential can then be calculated from eq. (2.4),

Vcl(t, r) ≡
i∂tCcl(t, r)
Ccl(t, r)

, Ccl(t, r) ≡
1
Nc

Tr
〈

W†
r (t)Wr (0)

〉

, (4.1)

with Wr(t) denoting a spatial Wilson line of lengthr. Timelike Wilson lines have disappeared due
to the use of temporal gauge. The result forVcl(t, r) is purely imaginary, and is shown in fig. 3.
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Figure 3: The imaginary part of the real-time static potential fromthe classical simulation (left panel)
and from resummed perturbation theory (right panel) [3].

β N amD confs r = 1a r = 2a r = 3a r = 4a
Simulation 16.0 12 0.0 200 -0.060(2) -0.156(8) -0.246(26) -0.319(56)

16.0 16 0.0 160 -0.059(2) -0.155(8) -0.245(22) -0.326(48)
16.0 12 0.211 200 -0.059(2) -0.147(7) -0.229(23) -0.297(51)

16.0 12 0.350 182 -0.030(2) -0.064(5) -0.096(12) -0.118(21)
13.5 12 0.250 142 -0.071(2) -0.174(10) -0.270(33) -0.341(97)

Analytic 16.0 ∞ 0.0 - -0.0601 -0.1145 -0.1507 -0.1737

Table 1: Overview of the results in the large-time limit [3]. The results from the classical and HTL-
improved simulations agree within error bars foramD < 0.25 (atβ = 16).

As seen in fig. 3, the predictions from resummed perturbationtheory and from the classical
numerical simulations are remarkably similar. At the same time, some amplification of the imagi-
nary part through the inclusion of non-perturbative (and higher-order perturbative) effects is visible
in the simulation. The difference between the two results becomes more pronounced at later times.
In particular, in the large-time limit, a difference between the perturbative and the numerical results
of up to∼ 100% can be observed (atβ = 16), cf. table 1.

5. Conclusions

The results from the real-time lattice simulations confirm the existence of an imaginary part
in the real-time static potential, indicated already by leading-order Hard Thermal Loop resummed
perturbation theory. In fact, non-perturbative and higherorder perturbative correctionsamplify the
imaginary part, by up to∼ 100%. The amplified imaginary part widens (and lowers) the quarko-
nium peak in fig. 1, although the qualitative structure remains unchanged. As a side remark, we
note that the existence of an imaginary part also leads to strong damping in the solution of the
Schrödinger equation in eq. (2.4), thus significantly facilitating the numerical determination of the
spectral function through eq. (2.1).
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