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Thermodynamics of 2+1 flavour QCD Jan van der Heide

1. Introduction

Obtaining detailed knowledge of the temperature dependence of the pressure and energy den-
sity, i.e. the equation of state, is very important for the understanding the behaviour of the fireball
created in heavy ion collisions. Several results for the equation of state in the two limiting cases
have been obtained. While the low temperature regime might be adequately described by the
hadron resonance gas model [1], and at very high temperatures, perturbation theory ought to work
[2], both techniques fail to correctly describe the transition from the hadronic regime to the plasma
phase; here one has to resort to genuinely non-perturbative methods such as lattice QCD. In this
paper, we present results for the QCD equation of state with almost physical quark masses. We
performed our calculations with a Symanzik improved gauge action and the p4fat3 fermion action
to reduce cut-off effects. In Sec.2, we introduce the necessary thermodynamic background, Sec.??
deals with the line of constant physics, the simulation parameters are discussed in Sec.3, whereafter
the results are presented in Sec.4. We end with conclusions in Sec.5.

2. Equation of State

The grand canonical potential is defined as

Ω(T,V ) = T lnZ(T,V )−Ω0 (2.1)

where we use the normalisation Ω0 = limT→0T lnZ(T,V ) to remove ultraviolet divergences. The
pressure and energy density are then simply obtained by invoking standard thermodynamic rela-
tions:

p =
1
V

Ω(T,V ) , ε =
T 2

V
∂Ω(T,V )/T

∂T
(2.2)

Due to our normalisation, p and ε both vanish at T = 0 by construction. This choice is similar
to that used in e.g. hadron gas calculations [1], but differs from normalisations used in other
methods [3, 4]. This should be kept in mind when our results are compared to other work. In the
entropy density, s/T 3 = (p− ε)/T 4, this ambiguity drops out; it is thus the preferred observable
for comparisons.

Since neither the grand canonical potential nor the partition function itself are directly obtain-
able from lattice calculations, we use the integration method[5]. We thus calculate the energy-
momentum tensor

θ µµ(T )
T 4 ≡ ε −3p

T 4 = T
∂

∂T
(p/T 4) (2.3)

and obtain the pressure as the temperature integral

p(T )
T 4 − p(T0)

T 4
0

=
∫ T

T0

dT ′θ
µµ

T ′5 . (2.4)

The temperature T0 is chosen deep enough in the hadronic phase, where the pressure is already
very small and can thus safely be ignored.
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Figure 1: Line of constant physics: a) the ratio of mps/mK does not depend on h = ms/ml . b) Meson masses
along the LCP; lines denote a band of ±3%.

The energy-momentum tensor can be expressed in observables which are easily calculated on
the lattice,

θ µµ(T )
T 4 = −

(
Nτ

Nσ

)3 (
a

dβ

da

)
∂

∂β
lnZ

= −Rβ N4
τ

(
1

N3
σ Nτ

〈
dS
dβ

〉
τ

− 1
NτN0

〈
dS
dβ

〉
0

)
= Rβ {[〈sG〉0−〈sG〉τ ]−Rm [2m̂l (〈ψ̄ψ〉l,0−〈ψ̄ψ〉l,τ)+ m̂s (〈ψ̄ψ〉s,0−〈ψ̄ψ〉s,τ)]

−Rhm̂s (〈ψ̄ψ〉s,0−〈ψ̄ψ〉s,τ)}N4
τ

where 〈sG〉0,τ = − 1
V

∂

∂β
lnZ = 1

N3
σ N0,τ

〈SG〉 is the expectation value of the gluon action density,

〈ψ̄ψ〉q = T
V

∂

∂ m̂q
lnZ = 1

4
1

N3
σ N0,τ

〈
TrM−1(m̂q)

〉
is the chiral condensate for quark flavour q, and m̂q =

mqa is the dimensionless quark mass. Furthermore, since we have changed the temperature deriva-
tive to a derivative with respect to β , one needs the ’Beta functions’,

Rβ =−a
dβ

da
=

r0

a

(
dr0/a

dβ

)−1

Rm =
1

m̂l

(
∂ m̂l

∂β

)
h

Rh =
1
h

(
∂h
∂β

)
m̂l

. (2.5)

Where h = ms/ml . Using h instead of ms enables us to remove the corresponding β -function
altogether, as we shall see in the following section.

3. Simulation parameters

In this section we shortly present the main parameters we have used in our simulations. We
have used lattice sizes of 163 × 4 and 243 × 6. In order to reduce discretisation effects, we employ
improved actions; the tree level improved 1×2 gauge action and the p4fat3 fermion action. The use

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
3
4

Thermodynamics of 2+1 flavour QCD Jan van der Heide

of the p4[6] fat3 fermion action also improves the rotational and the flavour symmetry. We simulate
two light and one heavier strange quark. The partition function depends on several parameters.
In order to keep physics the same along the integration trajectory, we need to fine tune the bare
parameters.

Z(T,V ;g,ml,ms) = Z(Nτ ,Nσ ,a;β , m̂l, m̂s)→ Z(Nτ ,Nσ ,a;β ,mπ ,mK) (3.1)

For different β -values, we tune the bare quark masses m̂ such that the pion and kaon masses remain
the same. From Fig.1(a), we see that to a high accuracy, the ratio of the kaon and pion masses
depends only on the light quark mass and the ratio h = ms/ml , not on the strange quark mass
separately. We choose our LCP by taking h = 10, and tuning the light quark mass such that the
kaon acquires its physical mass, mκ = 500 MeV, which corresponds to mπ ≈ 220 . In Fig.1(b)
we show the resulting meson masses in units of a physical scale (r0). From this, we see that our
simulations are indeed done along a line of constant physics. The line of constant physics is defined
through the following constraints, mssr0 = 1.58 and mπ/mK = 0.437, with r0 the Sommer scale.

To generate the Markov chain, we use the Rational Hybrid Monte Carlo (RHMC)[7, 8] as the
updating method. This algorithm has the advantage that it is made exact through the Metropolis
accept/reject step, allowing the use of different orders for the rational approximation in different
parts of the updating scheme. For the calculation of the pseudofermion force, which is computa-
tionally the most expensive part, we choose a low order. The error made in this step is corrected for
by the Metropolis step, with a high order rational polynomial. The error of this last approximation
is chosen to be at the level of machine precision, which leeds to an order of 20 or 16, depending on
the quark mass. The order used in the force calculation is tuned such that the acceptance is about
70% at a trajectory length of 0.5. This gives an order of 16 or 10, again depending on ml . As is
normal for RHMC, we use a multishift inversion solver[9]. In order to reduce the computational
costs even further, we use different time steps for the gauge and fermion parts of the updating algo-
rithm, á la Sexton and Weingarten[10], in a ratio of 15 : 1. For every T, ml combination, we have
obtained O(104) configurations.

4. Results

4.1 β -functions

In order to evaluate the beta functions of Eq.2.5, we need to know the β -dependence of r0/a(β )
and m̂l(β ). As a parametrisation, we use a Renormalisation Group inspired rational fit ansatz,

r0

a
(β ) = 1

arR2(β )
1+er â2(β )+ fr â4(β )

1+br â2(β )+cr â4(β )+dr â6(β )

m̂l(β ) = amR2(β )
(

12b0
β

)4/9 1+bmâ2(β )+cmâ4(β )+dmâ6(β )
1+emâ2(β )+ fmâ4(β )

with R2(β ) the perturbative β -function to two loops, R2(β ) = exp
(
− β

12b0

)(
6b0
β

)−b1/(2b2
0)

, and
â(β ) = R2(β )/R2(β = 3.4) In the case of r0/a, we also used two- and three interval cubic spline
fits in order to investigate the influence of the fits on the resulting β -function.

In Fig.2, we show the data for r0/a and mla and the mentioned fits. As we can see, the rational
fits seem to describe the data very well. For r0/a, the different spline fits describe the data equally

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
2
3
4

Thermodynamics of 2+1 flavour QCD Jan van der Heide

 0

 2

 4

 6

 8

 10

 12

 3.2  3.4  3.6  3.8  4
!

r0/a
RG inspired rational fit
Two interval cubic spline fit
Three interval cubic spline fit

 0

 0.004

 0.008

 0.012

 0.016

 3.2  3.4  3.6  3.8  4

!

mq a
RG inspired rational fit

Figure 2: Parametrisation of r0/a (left) and mqa (right) in order to extract the β -functions
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Figure 3: β -functions as obtained from the fit functions, Rβ (left) and −Rβ Rm (right).

well. The resulting β -functions extracted from these fits are shown in Fig.3. Although the different
fits are very similar, the resulting β -functions show somewhat different behaviour at low β values.
The differences are not large and will only have a small influence on the thermodynamic variables.
Moreover, the differences only occur for β values that are used in the nτ = 4 simulations. The low
β domain is still under investigation, therefore, the results we show in the next section are obtained
using the RG inspired fit only, without implying its superiority.
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4.2 Equation of state
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Figure 4: The trace of the energy momentum tensor
for two values of the temporal extent, Nτ

In this section, we present the main re-
sults of our investigation. For details and
a more thorough discussion, confer [11].In
Fig.4 we show the trace of the energy mo-
mentum tensor, θ µµ , for both values of Nτ .
As can be seen, the results are similar, but
the curves do not lie on top of each other.
This implies that cut-off effects are present,
but small. Specifically, at low temperatures,
the Nτ = 4 results are somewhat smaller.
This is expected and consistent with an over-
all shift of the temperature scale due to the
cut-off dependence of the transition temper-
ature [12]. The peak for Nτ = 4 is somewhat
higher, which is probably due to the non-
perturbative structure of the β -functions, Rβ and Rβ Rm in this region. At high temperatures, the
cut-off effects again become visible. The Nτ = 6 curve decreases slower with temperature than the
Nτ = 4 curve. This is not a finite volume effect as we have checked with additional simulation
at larger lattices. Since the contribution of the chiral condensates to Θµµ is small (O(10%)), the
observed differences can thus be attributed to cut-off effects in the gluonic sector. First calculations
performed on Nτ = 8 lattices in this high temperature region are consisted with the results obtained
on Nτ = 6 lattices and thus suggest that the cut-off effects are small on lattices with temporal extent
Nτ ≥ 6.

From the energy momentum tensor we calculate the pressure (difference) by integration, see
Eq.2.4. We used the trapezoid rule and have set the pressure to zero at our lowest β -value. We
obtain the results displayed in Fig.5. Other integration methods produce the same results within a
few percent. In Fig.5, we also show the energy density, which we obtain by combining the pressure
and the energy momentum tensor. Again, the cut-off effects are seen to be small. Both curves
approach the Stefan-Boltzmann limit to within 10% at high temperatures. Finally, we combine the
energy density and pressure to obtain the entropy density, which is shown in Fig.5. As mentioned
earlier, for this observable, the normalisation ambiguity at T = 0 does not exist, and it is therefore
well suited for comparison with different methods. For high temperatures, also the entropy density
reaches the SB limit to within 10%.

5. Conclusions

We have presented the results of an extensive investigation of the equation of state in QCD
with almost physical quark masses. We have performed simulations with a physical strange quark
mass and two degenerate light quark masses which are only twice the physical value. Further-
more, we used larger spatial lattices than before for two different temporal extensions. The finite
temperature simulations are accompanied by extensive T = 0 calculations to provide the necessary
normalisations and β -functions.
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Figure 5: The pressure and energy density (left) and entropy density (right) as a function of temperature.

At high temperatures, bulk thermodynamic quantities as pressure, energy density, and entropy
density, deviate from the continuum Stefan-Boltzmann limit only by about 10% and show little
cut-off dependence. Cut-off effects are small but visible in the energy momentum tensor. These
systematic effects will be resolved through further calculations on finer lattices.
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